LE REMPLACEMENT VALVULAIRE AORTIQUE CHEZ L'ENFANT
(A propos de 25 cas)

THÈSE
PRÉSENTÉE ET SOUTENUE PUBLIQUEMENT LE 22/09/2020

PAR
Mlle. AMELI AMINA
Née le 30/08 /1994

POUR L'OBTENTION DU DOCTORAT EN MÉDECINE

MOTS–CLÉS :
Atteinte aortique – Prothèse mécanique – Procédure de Ross

JURY

M. HARANDOU MUSTAPHA ... PRÉSIDENT
Professeur d'Anesthésie réanimation

M. EL KOUACHE MUSTAPHA .. RAPPORTEUR
Professeur agrégé d'Anatomie

M. ATMANI SAMIR... JUGES
Professeur de pédiatrie

Mme. LAHLOU IKRAM..
Professeur de cardiologie

M. BERDAI MOHAMED ADNANE...
Professeur agrégé d'Anesthésie réanimation
PLAN
Le Remplacement valvulaire aortique chez l’enfant

Thèse N°: 118/20

Liste des abréviations ... 5
Liste des Figures ... 7
Liste des Tableaux ... 9

INTRODUCTION ... 10

PARTIE THEORIQUE .. 12
I. Rappel anatomique de la valve aortique 13
II. Rappel fonctionnel de la valve aortique 16
III. Physiopathologie ... 17
IV. Les étiologies de l’atteinte valvulaire aortiques 20
V. Diagnostic positif ... 24
VI. Le substitut valvulaire ... 28
 VI.1. Les prothèses mécaniques ... 28
 VI.2. Les bio prothèses .. 30
 VI.3. Les critères de choix du substitut valvulaire 35

PARTIE PRATIQUE .. 36

Matériels et méthodes .. 37
 1. Type d’étude ... 38
 2. Population ... 38
 3. Recueil des données .. 38
 4. L’Analyse statistique .. 39

RESULTATS .. 47
I. Caractéristiques épidémiologiques .. 48
 I.1. Répartition géographique .. 48
 I.2. Répartition selon le sexe .. 49
 I.3. Répartition selon l’âge .. 50

Mlle. AMELI Amina
Le Remplacement valvulaire aortique chez l’enfant

I.4. Répartition des valvulopathies aortiques .. 51
I.5. La répartition des interventions ... 52

II. Etude Clinique .. 53
II.1. Antécédents familiaux ... 53
II.2. Antécédents personnels ... 54
II.3. Age de découverte ... 54
II.4. Circonstances de découverte ... 54

III. Examens complémentaires .. 59
III.1. Radiographie thoracique .. 59
III.2. Electrocardiogramme ... 59
III.3. Echocardiographie trans-thoracique ... 60

IV. Les étiologies ... 64

V. TRAITEMENT ... 65
V.1. Traitement médical : .. 65
V.2. Traitement chirurgical : ... 66
V.3. Réanimation : ... 72
V.4. Les complications : .. 73
V.5. Le suivi.. 74

Discussion ... 76

I. Caractéristiques générales : ... 77
- L’âge ... 77
- Le sexe ... 78
- Les étiologies .. 79
- L’atteinte aortique .. 78
- Le traitement chirurgical .. 79

Mlle. AMELI Amina
Le Remplacement valvulaire aortique chez l’enfant Thèse N°: 118/20

- L’usage des AVK .. 81
- Mortalité ... 81

II. L’utilisation des valves mécaniques chez l’enfant .. 82

III. Alternatives des substituts valvulaires mécaniques ... 84

Conclusion .. 87

Résumé ... 89

BIBLIOGRAPHIE ... 96
LISTE DES ABREVIATIONS

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAo</td>
<td>Anneau aortique</td>
</tr>
<tr>
<td>ACFA</td>
<td>Arythmie complète par fibrillation auriculaire</td>
</tr>
<tr>
<td>ATCD</td>
<td>Antécédents</td>
</tr>
<tr>
<td>AVC</td>
<td>Accident vasculaire cérébral</td>
</tr>
<tr>
<td>AVK</td>
<td>Anti vitamine K</td>
</tr>
<tr>
<td>CEC</td>
<td>La circulation extracorporelle</td>
</tr>
<tr>
<td>CHU</td>
<td>Centre hospitalier universitaire</td>
</tr>
<tr>
<td>CIV</td>
<td>Communication interventriculaire</td>
</tr>
<tr>
<td>DRV</td>
<td>Double remplacement valvulaire</td>
</tr>
<tr>
<td>DTD VG</td>
<td>Diamètre télé diastolique du VG</td>
</tr>
<tr>
<td>DTS VG</td>
<td>Diamètre télé systolique du VG</td>
</tr>
<tr>
<td>ECMO</td>
<td>Extracorporelle membrane oxygéné</td>
</tr>
<tr>
<td>FC</td>
<td>Fréquence cardiaque</td>
</tr>
<tr>
<td>FE</td>
<td>Fraction d'éjection</td>
</tr>
<tr>
<td>FR</td>
<td>Fraction de raccourcissement</td>
</tr>
<tr>
<td>FR</td>
<td>Fréquence respiratoire</td>
</tr>
<tr>
<td>JST</td>
<td>Jonction sino–tubulaire</td>
</tr>
<tr>
<td>HTAP</td>
<td>Hypertension intra pulmonaire</td>
</tr>
<tr>
<td>IA</td>
<td>Insuffisance aortique</td>
</tr>
<tr>
<td>IM</td>
<td>Insuffisance mitrale</td>
</tr>
<tr>
<td>Gd Moyen</td>
<td>Gradient moyen aorte–vg</td>
</tr>
<tr>
<td>Gd Max</td>
<td>Gradient maximal aorte–vg</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association</td>
</tr>
</tbody>
</table>
OAP : œdème aigue du poumon
OG : Oreillette gauche
PTDVG : Pression télé diastolique du ventricule gauche
RA : Rétrécissement aortique
RAA : Rhumatisme articulaire aigue
RM : Rétrécissement mitral
RVAO : Remplacement valvulaire aortique
Sao : Surface aortique
SaO2 : Saturation en oxygène
Sc : Surface corporelle
TA : Tension artérielle
VA : Valve aortique
VG : Ventricule gauche
LISTE DES FIGURES

FIGURE 3: SCHEMA MONTRANT LES DIFFERENTES FORMES DE LA VALVE AORTIQUES EN SYSTOLE ... 16
FIGURE 4: SCHEMA MONTRANT UNE DYSFONCTION DES FEUILLETS OU DE L’ANNEAU AORTIQUE. ... 17
FIGURE 6: LA CLASSIFICATION DES BICUSPIDIES .. 20
FIGURE 7: STÉNOSE AORTIQUE RHUMATISMALE[8] ... 21
FIGURE 8 : A– VALVE MECANIQUE DOUBLE AILETTE (ST JUDE) ; B– VALVE MECANIQUE MONODISQUE ; C– VALVE DE STARR A BILLE ... 29
FIGURE 9: A: BIOPROTHESE AVEC ARMATURE PORCINE, B: BIOPROTHESE AVEC ARMATURE PERICARDIQUE, C : BIOPROTHESE SANS ARMATURE ... 32
FIGURE 10: PROCEDURE DE ROSS. UNITE MEDICO–CHIRURGIACLE AU CHU HASSAN II . 69
FIGURE 11: REPARTITION GEOGRAPHIQUE DES PATIENTS .. 48
FIGURE 12: REPARTITION SELON LE SEXE .. 49
FIGURE 13: REPARTITION DES PATIENTS SELON LES TRANCHES D’AGES 50
FIGURE 14: REPARTITION DES VALVULOPATHIES AORTIQUES ... 51
FIGURE 15: LA REPARTITION DES INTERVENTIONS PAR PERIODE .. 52
FIGURE 16 : REPARTITION SELON LA CONSANGUINITE .. 53
FIGURE 17: CARACTERISTIQUES CLINIQUES PREOPERATOIRES DES PATIENTS 55
FIGURE 18: REPARTITION SELON LE STADE DE DYSPNEE .. 56
FIGURE 19: RESULTATS DE L’EXAMEN CLINIQUE .. 58

Mlle. AMELI Amina
FIGURE 20: REPARTITION SELON LE DEGRE DE FUITE AORTIQUE.. 60
FIGURE 21: REPARTITION SELON LE DEGRE DU RETRECISSEMENT AORTIQUE 61
FIGURE 22: LES ETIOLOGIES DE L'ATTEINTE VALVULAIRE AORTIQUE.......................... 64
FIGURE 23: REMPLACEMENT DE LA VALVE AORTIQUE.. 68
FIGURE 24: GESTES ASSOCIES PENDANT LE REMPLACEMENT VALVULAIRE AORTIQUE .. 71
FIGURE 25: COURBE DE SURVIE GLOBALE SELON KAPLAN MEIER................................. 74
FIGURE 26 : ALGORITHME PROPOSE POUR LE DIAGNOSTIC ET LA GESTION DES PETITS
ANNEAUX AORTIQUES.. 86
Liste des Tableaux

TABLEAU 1: PARAMETRES ECHOGRAPHIQUES D'EVALUATION DE LA SEVERITE D'UNE INSUFFISANCE AORTIQUE ... 27
TABLEAU 2: TABLEAU RECAPITULATIF .. 45
TABLEAU 3: REPARTITION SELON LES TRANCHES D'AGES 50
TABLEAU 4: LES ANTECEDENTS FAMILIAUX RETROUVES CHEZ NOS PATIENTS 53
TABLEAU 5: LES PRINCIPALES CIRCONSTANCES DE DECOUVERTE DE LA VALVULOPathie AORTIQUE ... 54
TABLEAU 6: RÉSULTATS DE L'AUSCULTATION CARDIAQUE 57
TABLEAU 7: REPARTITION DES PATIENTS SELON L'INDEX CARDIO–THORACIQUE 59
TABLEAU 8: LA MOYENNE DU DTD DU VENTRICULE GAUCHE SELON LA LÉSION PRÉDOMINANTE ... 62
TABLEAU 9: L'INDICATION OPERATOIRE SELON LA NATURE DE L'ATTEINTE AORTIQUE ... 63
TABLEAU 10: LE TRAITEMENT MÉDICAL .. 65
TABLEAU 11: LA DURÉE MOYENNE DE LA CEC ET DU CLAMPAGE AORTIQUE 67
TABLEAU 12: TABLEAU RESUMANT LES DONNEES PER–OPERATOIRE 67
TABLEAU 13: TYPES ET TAILLES DES PROTHÈSES UTILISÉES 70
TABLEAU 14: LES GESTES ASSOCIÉS PENDANT LE REMPLACEMENT AORTIQUE 71
TABLEAU 15: LES DIFFERENTES COMPLICATIONS EN INTRA HOSPITALIER 73
TABLEAU 16: CARACTÉRISTIQUES DES TROIS PATIENTS DÉCÉDÉS 75
TABLEAU 17: AGE MOYEN AU MOMENT DE L'INTERVENTION 77
TABLEAU 18: REPARTITION SELON LE SEXE ... 78
TABLEAU 19: LES DIFFERENTES LESIONS AORTIQUES 78
TABLEAU 20: PROCEDURES CONCOMITANTES REALISEES PENDANT LE REMPLACEMENT VALVULAIRE AORTIQUE .. 80
TABLEAU 21: LA MORTALITE OPERATOIRE ET TARDIVE 81
TABLEAU 22: CARACTERISTIQUES DES PATIENTS AYANT BENEFICIES DU RVA+ EAA 83
TABLEAU 23: CARACTERISTIQUES DES PATIENTS AYANT BENEFICIENT DU RVA PAR L'AUTOGREFFE PULMONAIRE ... 85
INTRODUCTION
Plusieurs pathologies, telles que les cardiopathies congénitales et le rhumatisme articulaire aigu, peuvent affecter la valve aortique chez l’enfant nécessitant fréquemment une intervention.

Bien qu’une réparation de la valve aortique soit recommandée au départ chez l’enfant atteint de la maladie aortique, le remplacement de la valve aortique pourrait devenir nécessaire en cas d’une destruction importante de la valve ou après échec de la réparation.

Le remplacement valvulaire aortique a permis une nette amélioration de l’histoire naturelle de la maladie aortique. Il représente la thérapie la plus prometteuse pour cette pathologie.

L’enfant atteint de la maladie valvulaire aortique avec l’indication chirurgicale constitue un enjeu majeur en chirurgie cardio-pédiatrique. En effet, ce groupe de patient, avec une croissance somatique et une longue espérance de vie attendue, est plus à risque de complications à long terme liées aux prothèses, principalement sous forme de dysfonction prothétique, de réintervention, d’événements thrombemboliques et/ou hémorragiques.

Le but de ce travail est de décrire les caractéristiques cliniques et paracliniques des patients pédiatriques ayant bénéficiés d’un remplacement valvulaire aortique à l’unité médico-chirurgicale cardio-pédiatrique au CHU Hassan II Fès, afin d’identifier les facteurs pronostiques de morbi-mortalités et de mettre en évidence les particularités de prise en charge pré- et post-opératoires. Tous ces éléments seront comparés à ceux décrits dans la littérature.
PARTIE THEORIQUE
I. **Rappel anatomique de la valve aortique**

La valve aortique est une valve tricuspide qui fait partie de la racine aortique. Cette dernière joue un rôle majeur dans la fonction du cœur et le système cardiovasculaire. Elle permet un flot laminaire non obstructif durant la systole, tout en empêchant un reflux du sang dans le ventricule gauche (VG) lors de la phase diastolique du cycle cardiaque\(^1\).

La racine aortique est constituée de six éléments suivants (figure1) :

- Les cuspides,
- Les commissures,
- Les triangles inter–cuspides,
- Les sinus de Valsalva,
- La jonction sino–tubulaire et
- L’anneau aortique.

Chaque structure de la racine aortique a son propre profil histologique et architecture anatomique. Tous ces éléments interagissent de manière homogène pour maintenir une fonction optimale.

![Figure 1: Schéma montrant les différents constituants de la racine aortique](image2)
I.1. Les cuspides (sigmoïdes ou valvules)

Formées de trois feuillets semi-lunaires :

- Le coronarien droit (CD) ou cuspide antérieure ;
- Le coronarien gauche (CG) ou cuspide postérieure gauche ;
- Le non coronarien (NC) ou cuspide postérieure droite.

La base de chaque cuspide est implantée en forme de « U » sur la paroi aortique, dont le bord distal est libre. La partie centrale des bords libres présente un renforcement fibreux appelé « nodule d’Arantius » qui assure l’étanchéité du centre de l’orifice valvulaire. Ce nodule fibreux est prolongé de chaque côté par une mince bande semi-lunaire translucide, appelée la lunule. Ces trois cuspides forment la valve aortique qui est une frontière physique entre le ventricule gauche et l’aorte, et forme une jonction hémodynamique puisqu’elle assure un flux unidirectionnel du sang.

I.2. Les commissures

Sont au nombre de trois, de structure fibreuse. Chaque commissure correspond au site d’insertion des lunules de deux feuillets coronariens à la paroi aortique en regard de la jonction sino-tubulaire.

I.3. Triangles inter-cuspides

Sous ces commissures se trouvent les triangles inter-cuspides qui, histologiquement, correspondent à une portion de la paroi aortique amincie, et du point de vue hémodynamique, à une extension de la voie d’éjection du ventricule gauche.
I.4. Sinus de Valsalva

Sont au nombre de trois sinus (droit, gauche et non coronarien) qui sont des renflements de la racine aortique en regard des cuspides aortiques. Les deux sinus droit et gauche donnent respectivement naissance aux artères coronaires droite et gauche juste au-dessus de la valve aortique.

I.5. La jonction sino-tubulaire

C’est une structure tubulaire qui passe par la partie supérieure de chaque commissure. Elle marque le point de transition entre la racine aortique et l’aorte ascendante.

I.6. L’anneau aortique

Bien que n’ayant pas d’identité anatomique ou histologique réelle, l’anneau aortique forme une structure circulaire virtuelle dont la circonférence est définie par le point d’ancrage le plus bas de chaque cuspide (figure 2).

Figure 2: Représentation schématique de la racine aortique [3]
II. **Rappel fonctionnel de la valve aortique**

Les 2 fonctions principales de la valve aortique sont de prévenir le mouvement rétrograde de sang (de l'aorte vers le ventricule gauche) lors de la diastole et de permettre le mouvement antérograde de sang (ventricule gauche vers aorte) lors de la systole.

L'ouverture de la valve débute avant l'éjection, elle est liée à l'expansion pré-éjectionnelle de l’anneau aortique et de la JST, à l'augmentation de la pression VG, et à une redistribution du volume du VG sous les cuspidés (triangles sous-commissuraux) ce qui optimise l’ouverture valvulaire et l'éjection systolique (mouvement antérograde de sang).

En systole, la surface d'ouverture de la valve aortique est de 3 – 4 cm², mais la forme de cette ouverture se modifie au cours de l’éjection (figure 3) :

- Circulaire en protodiastole, pendant le pic du flux (vitesse maximale);
- Triangulaire pendant ≥ 70% de la durée d’éjection ;
- En étoile à 3 branches en télésystole, lorsque le flux devient faible[2].

![Figure 3: Schéma montrant les différentes formes de la valve aortiques en systole](image)

Une fois la systole terminée, la pression au niveau de l'aorte devient supérieure à celle du ventricule gauche, entrainant la fermeture de la valve aortique.
III. **Physiopathologie**

Lors d’une valvulopathie, la valve peut présenter des anomalies soit structurelles le plus souvent congénitales ou des anomalies secondaires (acquises) à certaines affections.

Le dysfonctionnement peut prendre deux formes :

- Soit un rétrécissement ou sténose par diminution de la mobilité des feuillets valvulaires.
- Soit une insuffisance ou régurgitation due à un défaut de coaptation des feuillets de la valve.

III.1. Insuffisance aortique

Deux processus pathologiques peuvent mener à une insuffisance aortique, soit que l’atteinte est au niveau des feuillets valvulaires ou au niveau de l’anneau aortique (figure 4).

![Figure 4: Schéma montrant une dysfonction des feuillets ou de l’anneau aortique](image)

Mlle. AMELI Amina
17
Le Remplacement valvulaire aortique chez l’enfant

Lors d’une insuffisance valvulaire, il y a une régurgitation de sang responsable d’une surcharge du volume du VG. Par conséquent, Le ventricule gauche est soumis à l’augmentation simultanée de la pré-charge par augmentation du volume sanguin en fin de diastole et de la post-charge en raison de l’augmentation du volume d’éjection systolique face aux résistances systémiques.

La phase compensée : le VG s’adapte à ses nouvelles conditions de charge par des mécanismes de compensation, en particulier par un remodelage progressif fait de dilatation et d’hypertrophie de type excentrique, afin[4]:

- D’empêcher l’élévation de la PTDVG.
- De maintenir un débit cardiaque normal par élévation du volume télédiastolique, et donc du volume d’éjection systolique.

A un stade tardif, cette hypertrophie sera dépassée et ne pourra plus compenser l’augmentation de la post charge et on assiste alors à une altération de la fonction systolique ce qui correspond à la phase décompensée de l’IA[5].
III.2. Rétrécissement aortique

Lors d’un rétrécissement valvulaire, la diminution du diamètre de l’orifice réalise une surcharge à l’éjection ventriculaire entrainant plusieurs conséquences, à savoir :

- Une hyperpression Intra ventriculaire gauche avec augmentation du gradient de pression VG–Aorte.
- Une hypertrophie ventriculaire gauche (HVG) progressive de type concentrique pour maintenir normale la performance systolique ventriculaire.
- Une Dysfonction diastolique secondaire à l’hypertrophie pariétale qui entraine une altération de la compliance ventriculaire (élasticité) et un ralentissement de la relaxation.
- En aval : un bas débit cardiaque et coronaire.

Figure 5 : schéma montrant la dysfonction ventriculaire gauche [6]
IV. Les étiologies de l’atteinte valvulaire aortiques

IV.1. Les pathologies congénitales

IV.1.1. Bicuspidie aortique

La bicuspidie aortique est la malformation cardiaque congénitale la plus fréquente, affectant 1 à 2 % de la population générale. Cette malformation, souvent considérée comme bénigne peut se compliquer de dysfonction valvulaire entrainant :

Une sténose, par usure prématurée des valves aboutissant à l’ulcération de leurs bords libres, l’incorporation de thrombi plaquettaires et l’épaississement du tissu valvulaire avec des dépôts calciques, une fuite, par prolapsus valvulaire, rétraction par fibrose ou dilatation de la jonction sino-tubulaire[7].

C'est la cause la plus fréquente de remplacement valvulaire aortique chez l’adulte. Elle peut être associée à une dilatation anévrismale de l’aorte ascendante à haut risque de dissection.

La classification récemment proposée par Sievers :

![Figure 6: La classification des bicuspidies](image)

Mlle. AMELI Amina

20
IV.2. Les pathologies acquises

IV.2.1. La maladie aortique rhumatismale

Le rhumatisme articulaire aigu est une affection systémique post infectieuse, causée par le streptocoque beta hémolytique du groupe A. Son incidence a connu une baisse significative dans les pays industrialisés grâce à l’utilisation des antibiotiques. Cependant il demeure un sérieux problème de santé publique dans les pays en voie de développement[9].

Les atteintes du système valvulaire lors des récidives vont être à l’origine de lésions sténosantes ou fuyantes. Les différentes structures valvulaires peuvent être touchées, soit de façon isolée ou dans le cadre d’une atteinte poly-valvulaire. La valve mitrale est la plus fréquemment concernée, peut être isolé ou associés à l’atteinte aortique.

L’insuffisance aortique est souvent associée à l’atteinte mitrale. Elle est secondaire à un épaississement et une rétraction des structures valvulaires.

Le rétrécissement aortique rhumatismal s'associe souvent à l’insuffisance aortique définissant la maladie aortique et/ou une valvulopathie mitrale. Il est secondaire à la fusion des commissures réduisant la surface aortique.
IV.2.2. L’endocardite infectieuse

L’endocardite infectieuse se définit comme la greffe d’un micro-organisme (généralement une bactérie) sur une lésion cardiaque préexistante. Elle est rare chez l’enfant, mais non exceptionnelle, sa fréquence maximale se situe entre 10 et 15 ans. Elle est rare avant 5 ans, exceptionnelle chez le nourrisson.

Les dégâts valvulaires dépendent de la durée d’évolution, du type du germe, du caractère aigu ou subaigu. Il peut s’agir de végétations ou de mutilations valvulaires[10] :

Les végétations sont presque constantes, isolées ou associées aux lésions destructrices. Ce sont des excroissances jaunes rougeâtre irrégulières, friables, sessiles ou pédiculées, mobiles, parfois calcifiées à leur extrémité distale, ou complétées par une thrombose fibrino-cruorique. Les végétations les plus volumineuses et les plus friables sont observées avec les levures et les staphylocoques. Elles peuvent éverser une valve et la rendre incontiente ou, par leur volume, obstruer l’orifice valvulaire. Histologiquement, les végétations sont constituées d’amas de fibrine et de plaquettes, des colonies bactériennes et très peu de polynucléaires. Sous traitement, les végétations peuvent disparaître, parfois très lentement, persister ou parfois se calcifier.

Les mutilations valvulaires s’observent au cours des endocardites aiguës. L’ulcération est une perte de substance d’importance variable, souvent considérable sur la valve aortique et tricuspide et minime sur la valve mitrale, encochant le bord libre. Les perforations sont fréquentes, de taille variable, à l’emporte-pièce, uniques ou multiples. Elles sont plus volumineuses et plus nombreuses sur la valve aortique que sur la valve mitrale.

Son diagnostic repose avant tout sur les hémocultures et la mise en évidence de lésions cardiaques mutilantes ou végétantes à l’échocardiographie.
Son traitement curatif repose sur une antibiothérapie, adaptée au germe responsable, administrée par voie parentérale à doses fortes et prolongées.

Enfin, il faut insister sur la nécessité d’une prévention soigneeuse, essentiellement par l’administration d’antibiotiques, avant tout geste chirurgical potentiellement septique, chez tout sujet à risque, selon un protocole à présent bien codifié.
V. Diagnostic positif

V.1. Rétrécissement aortique

V.1.1. Clinique

A– Les signes fonctionnels \[^{[11]}\]

Dyspnée d’effort :
C’est le symptôme le plus fréquent et parfois révélateur du RA. Elle est principalement liée à la dysfonction diastolique.

Angor d’effort :
C’est le deuxième symptôme par ordre de fréquence. L’origine de la dyspnée est multifactorielle (augmentation de la consommation myocardique en oxygène du fait de l’hypertrophie ventriculaire gauche, diminution de la réserve coronaire ou bas débit.

Syncope d’effort :
Elle est liée essentiellement à une hypo perfusion cérébrale à l’effort du fait de l’obstacle aortique (bas débit). Elle est rarement due à un trouble du rythme ou de conduction.

B– Les signes physiques

L’auscultation Cardiaque : un souffle systolique (méso systolique, débute après B1 et se termine avant B2), de timbre dur et râpeux, maximal au foyer aortique (deuxième espace intercostal, bord droit du sternum), irradiant aux carotides. Le B2 est habituellement conservé. Sa diminution ou son abolition traduit le caractère serré du RA.
V.1.2. Paraclinique

Radiographie pulmonaire

L’index cardiothoracique est le plus souvent normal (hypertrophie concentrique). La radiographie pulmonaire peut permettre de visualiser les calcifications valvulaires et une éventuelle dilatation aortique associée. Elle peut également objectiver des signes d’insuffisance cardiaque (syndrome interstitiel, épanchement pleural) et recherche des anomalies associées du parenchyme pulmonaire.

Echocardiographie Trans–thoracique

L’échocardiographie est l’examen–clé. Le diagnostic positif de RA est souvent évident avec remaniements/ calcifications des sigmoïdes aortiques et limitation de leur ouverture en mode bidimensionnel. Le diagnostic de rétrécissement est affirmé par l’existence d’une accélération du flux traversant l’orifice aortique (élévation de la vitesse maximale et du gradient moyen) mesurés en doppler continu ; ainsi que par une diminution de la surface valvulaire aortique.

La sévérité du RA repose également sur ces trois paramètres : pic de vitesse, gradient moyen trans–aortique et surface valvulaire aortique. Le RA est défini comme sévère (ou serré) si le pic de vitesse est supérieur à 4 m/s, le gradient moyen supérieur à 50mmHg et la surface valvulaire inférieure à 1 cm² (ou inférieure à 0,6 cm²/m² de surface corporelle).

Le diagnostic étiologique échographique repose sur l’appréciation du nombre de commissures (ou de sigmoïdes) et leur caractère fusionné (RA rhumatismal) ou non, la mobilité des sigmoïdes, l’existence d’un raphé. Un anneau aortique large ainsi qu’une dilatation associée de l’aorte est fortement évocatrice d’une bicuspidie.

L’échocardiographie renseigne également sur la fonction systolique et diastolique du ventricule gauche, la masse ventriculaire gauche (hypertrophie
ventriculaire gauche), la pression artérielle pulmonaire systolique, la taille de l’oreillette gauche, l’existence d’une autre valvulopathie associée (une atteinte mitrale associée oriente vers une étiologie rhumatismale).

V.2. Insuffisance aortique

V.2.1. Clinique

- **A– Signes fonctionnels** [12]

 Elle est caractérisée par une longue période asymptomatique. Tardivement peut apparaître
 - Dyspnée d’effort puis de repos
 - Des lipothymies, plus souvent que des syncopes ;
 - Des palpitations, une fatigabilité ;
 - L’angor, plus rare que dans le rétrécissement aortique orificiel ;
 - Des signes d’insuffisance gauche ou globale.
 - OAP dans les formes aigües.

- **B– Signes physiques**

 Auscultation cardiaque : un souffle Holo diastolique aspiratif pouvant s’associer à un souffle systolique dans les IA volumineuses.

 Les signes artériels périphériques sont présents uniquement dans les insuffisances aortiques chroniques et volumineuses : élargissement de la pression artérielle différentielle, hyperpulsatilité artérielle.
V.2.2. Paraclinique

Radiographie pulmonaire :
- Dilatation du VG avec allongement de l’arc inférieur gauche.
- Cardiomégalie.
- Dilatation diffuse de l’aorte thoracique.
- Signes de surcharge ventriculaire.

Electrocardiogramme :

Le rythme est habituellement sinusal. L’hypertrophie ventriculaire gauche est l’anomalie la plus fréquente. Les troubles de conductions auriculo–ventriculaires sont le plus souvent du premier degré.

Echocardiographie Trans–thoracique [13]

Le diagnostic est affirmé en Doppler couleur, pulsé ou continu. L’insuffisance aortique est quantifiée en grade de 1 à 4 selon sa sévérité sur les critères échographiques.

Tableau 1: Paramètres échographiques d’évaluation de la sévérité d’une insuffisance aortique
Le retentissement de l'IA est également apprécié en échocardiographie avec évaluation du degré de dilatation du VG (mesure des diamètres et des volumes) et d'HVG et estimation de la pression artérielle pulmonaire systolique à partir de l’enregistrement Doppler d’une fuite tricuspile.

L’analyse échocardiographique de la morphologie des sigmoïdes aortiques et du mécanisme de l’IA contribue au diagnostic étiologique et a un intérêt thérapeutique, en particulier lorsqu’une chirurgie conservatrice est envisagée. Dans les IA rhumatismales, les feuillets sont épaissis, en particulier au niveau des bords libres. L’identification d’une bicuspidie est parfois difficile et doit reposer sur des vues en systole car un aspect de raphé entre deux commissures fusionnées peut faire diagnostiquer à tort un orifice tricuspile sur une vue en diastole.

VI. **Le substitut valvulaire**

Les matériaux de substitut valvulaire peuvent être divisés en deux grands groupes: les prothèses mécaniques et les bio prothèses d'origine humaine ou animale[14][15][16].

VI.1. Les prothèses mécaniques

- **Classification** :

Les valves peuvent être décrites en fonction du système d’occlusion définissant trois grands groupes de prothèses :

- **Les prothèses à bille** sont les plus anciennes, elles sont composées d'un anneau aortique avec une arche métallique dans laquelle est piégée une boule faisant office de valve se fermant avec le jeu des pressions trans-valvulaires.

- **Les prothèses à disque oscillant** sont apparues secondairement, l'élément mobile permet une ouverture de 60 à 80° entraînant deux flux excentrés d'intensités différentes.

- Et enfin **les prothèses à doubles ailettes** sont les plus récentes, elles possèdent deux disques semi-circulaires mobiles s'ouvrant quasi complètement et permettent un flux hémodynamique rectiligne plus physiologique. Leur efficacité est jugée bien supérieure aux précédentes.

Figure 8 : A– valve mécanique double ailette (st Jude) ; B– valve mécanique monodisque ; C– valve de Starr à bille
Les prothèses à double ailettes présentent les caractéristiques suivantes :

- Un profil hémodynamique performant notamment dans les petits diamètres aortiques ;
- Faible thrombogénicité ;
- Excellente durabilité au terme d’un suivi clinique particulièrement élevé.

Le principal avantage des valves mécaniques est leur durabilité : elles ne sont pas soumises à un risque de dégénérescence et ont donc une espérance de fonctionnement en général supérieure à l’espérance de vie du patient. Leur inconvénient, comme tout matériel prothétique mécanique, au contact du sang présente le risque thrombo-embolique.

Ce risque est donc nettement diminué par le traitement anticoagulant au long cours. Mais il se surajoute des risques supplémentaires liés aux complications des AVK. Il est donc nécessaire de réaliser une surveillance biologique rapprochée de l’INR. Une autre cause de dysfonction des prothèses mécaniques où les éléments mobiles de la prothèse peuvent se rompre au niveau des zones plus fines ou de friction. Ces ruptures d'ailettes empêchent donc la coaptation normale responsable d'une fuite prothétique. Ce type de prothèse est préféré chez les patients jeunes ayant une espérance de vie longue de plus de 10 ou 15 ans.

VI.2. Les bio prothèses

On distingue les homogreffes, les autogreffes et les hétérogreffes. Ces dernières qui sont de très loin les plus utilisées (99 % des remplacements valvulaires par biomatériaux) avec deux variantes actuelles : les bio prothèses avec armature et les bio prothèses sans armature.
VI.2.1. Les hétérogreffes

Elles sont globalement de deux types selon la nature du tissu utilisé : porcines ou péricardiques (figure9)

Bio prothèses porcines : Les bio prothèses implantées sont des valves de deuxième génération avec optimisation de tous les procédés de préparation et de traitement (traitement par glutaraldéhyde), fixation du tissu à basse pression (ou à pression nulle), armatures souples ou semi-flexibles, avec procédés adjuvants visant à limiter la calcification.

Bio prothèses péricardiques. Elles sont réalisées à partir du tissu péricardique du veau (quelques variantes actuellement avec un tissu équin en principe plus résistant).

On retrouve deux grands groupes : des valves montées ou non sur une armature métallique.

- Les valves à armatures métalliques dite stentées, sont composées d'un anneau aortique intégré sur lequel sont montés des feuillets valvulaires d'origine biologique.
- Les valves sans armatures dites stentless (figure8), sont fabriqués des mêmes matériaux biologiques et ne présentent donc pas d'armatures métalliques.

L'avantage de ses bios prothèses est la faible thrombogénicité permettant d'éviter une anticoagulation au long cours. Cependant ces valves présentent une dégénérescence progressive pouvant nécessiter un nouveau remplacement valvulaire. Cette durabilité moindre fait donc préférer les prothèses mécaniques chez les patients jeunes afin d'éviter une ré intervention.
VI.2.2. Homogreffes et autogreffes

Dans les années 1960, certains chirurgiens se sont tournés vers des techniques chirurgicales plus complexes afin d’améliorer le bénéfice des RVA biologiques : l’homogreffe aortique et l’autogreffe pulmonaire (procédure de Ross).

Les homogreffes et autogreffes correspondent à un remplacement valvulaire aortique utilisant des tissus valvulaires humains.

Les homogreffes aortiques :

Les homogreffes étaient apparues comme une alternative intéressante vis-à-vis des prothèses mécaniques car elles ne nécessitent pas de traitement anticoagulant, et vis-à-vis des hétérogreffes de durée de vie limitée.

Leur utilisation est largement limitée par les possibilités de prélèvement. La seule source d’homogreffe est liée à la transplantation cardiaque. Les cœurs non retenus pour la transplantation peuvent être prélevés pour l’utilisation des valves. Les cœurs explantés lors de la transplantation peuvent eux aussi être utilisés au strict point de vue valvulaire.
Le Remplacement valvulaire aortique chez l’enfant

Leur utilisation en pratique est limitée à l’orifice aortique. Les tissus de l’homogreffe sont plus souples que les tissus des hétérogreffes stentless, ce qui facilite l’implantation et ce d’autant que l’homogreffe peut se trouver inversée dans la voie d’éjection ventriculaire gauche pour confection de la suture sur l’anneau aortique.

Leur durabilité considérée initialement comme potentiellement excellente même chez le sujet jeune est en fait assez voisine de celle des hétérogreffes actuelles. Leur indication, hormis pour quelques équipes, reste très marginale, avec une option préférentielle pour les cas d’endocardites avec destruction des structures de voisinage.

L’Autogreffe pulmonaire :

L’intervention de Ross consiste à remplacer une valve aortique pathologique en utilisant la propre valve pulmonaire du patient «autogreffe pulmonaire» [17].

La technique chirurgicale comporte quatre temps principaux :

- Prélèvement de l'autogreffe pulmonaire ;
- Exérèse de la valve aortique et préparation de l'ostium ventriculaire gauche ;
- Remplacement de la racine aortique à l'aide de l'autogreffe pulmonaire
- Reconstruction de la voie pulmonaire.
Figure 10: Schéma représentant une procédure de Ross complétée [18]

Les avantages potentiels de l'intervention de Ross sont nombreux : possibilité de croissance, excellentes performances hémodynamiques, absence de nécessité de traitement anticoagulant, résistance à l'infection.

Les indications sont maintenant assez bien codifiées : remplacement valvulaire aortique chez l'enfant, endocardite aiguë sur valve native ou prothèse valvulaire, femme jeune désireuse de grossesse, contre-indication au traitement anticoagulant au long cours.
VI.3. Les critères de choix du substitut valvulaire

En 1976, Roberts a décrit les six caractéristiques idéales d’un substitut valvulaire [18][19] :

✓ Bon profil hémodynamique c’est-à-dire non obstructif ;
✓ Non thrombogène ;
✓ Ne se dégénère pas avec le temps ;
✓ N’altère pas les éléments figurés du sang ;
✓ Implantation chirurgicale sans difficulté technique ;
✓ Bien toléré par le patient.

Chez l’enfant et l’adulte jeune, la chirurgie du remplacement valvulaire aortique pose des problèmes dans le choix du substitut valvulaire. Il n’existe pas à l’heure actuelle une prothèse valvulaire idéale surtout chez l’enfant. Celle-ci devrait être une valve durable, disponible dans toutes les tailles (petites notamment) avec un excellent profil hémodynamique, préservant le potentiel de croissance de l’anneau natif en corrélation avec la croissance somatique de l’enfant et ne nécessitant pas de traitement anticoagulant au long cours.
PARTIE PRATIQUE
MATERIELS ET METHODES
1. **Type d'étude**

Il s'agit d'une étude rétrospective menée au sein de l’unité médico-chirurgicale cardio-pédiatrique au CHU HASSAN II de Fès, portant sur 25 patients atteints d'une valvulopathie aortique, entre janvier 2012 et décembre 2019.

2. **Population**

Nous avons inclus l’ensemble des enfants moins de 18 ans, et ayant bénéficié d'une intervention chirurgicale de type remplacement valvulaire aortique.

3. **Recueil des données**

 - **Données cliniques et para cliniques**

 Pour chaque patient inclus, l’ensemble des données cliniques et échographiques préalables à la chirurgie sont recueillis à partir des dossiers médicaux récupérés de l'archive du service pédiatrique et du système informatique Hosix.

 Nous nous sommes particulièrement intéressés à l'âge, au sexe, au poids, à la pathologie cardiaque initiale, et aux données échographiques préopératoires (estimation de la fuite aortique, gradient moyen trans-valvulaire aortique, fraction d'éjection ventriculaire gauche, diamètre télé diastolique du ventricule gauche, diamètre de l’anneau aortique et pressions artérielles pulmonaires).

 - **Données opératoires**

 Pour les données chirurgicales, ils sont recueillis à partir des comptes rendus opératoires et des registres de circulations extracorporelles. Ensuite, Nous nous sommes intéressés à la marque de la prothèse mise en place, à sa taille, ainsi qu'aux gestes associés, au temps de clampage aortique et à la durée de la circulation extracorporelle pendant la procédure.
4. L’Analyse statistique

Toutes les données ont été rapportées sur des fiches d’exploitation puis analysées par le logiciel Excel 10 et SPSS 21.

Les variables continues sont exprimées en moyenne ± écart type et les variables ordinales en nombre et en pourcentage.
LA FICHE D’EXPLOITATION

<table>
<thead>
<tr>
<th>Identité</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM :</td>
<td>Prénom :</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexe : Masculin ☐ Féminin</td>
<td></td>
</tr>
<tr>
<td>Date de naissance :</td>
<td>Age :</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Adresse :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Scolarité :</td>
<td>Oui ☐ Non ☐</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutualiste :</td>
<td>Oui ☐ Non ☐</td>
</tr>
</tbody>
</table>

Motif de consultation : ...

ATCD médicaux

Familiaux

<table>
<thead>
<tr>
<th>Consanguinité :</th>
<th>Oui ☐ Non ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fratrie :</td>
<td>Nombre :</td>
</tr>
<tr>
<td></td>
<td>Décès :</td>
</tr>
<tr>
<td>Cardiopathie familiale :</td>
<td>Oui ☐ Non ☐</td>
</tr>
<tr>
<td>Maladie chronique :</td>
<td>Oui ☐ Non ☐</td>
</tr>
</tbody>
</table>

Personnels :

Grossesse :

Suivie de grossesse :	Oui ☐ Non ☐
Infection au cours la grossesse :	Oui ☐ Non ☐
Prise médicamenteuse :	Oui ☐ Non ☐
Prise toxique :	Oui ☐ Non ☐
Irradiation :	Oui ☐ Non ☐
Dépistage anténatal de cardiopathie :	Oui ☐ Non ☐

Période néonatale :
<table>
<thead>
<tr>
<th>Question</th>
<th>Oui</th>
<th>Non</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age gestationnel à l'accouchement :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poids à la naissance :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accouchement médicalisé :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Souffrance néonatale :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccination :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bon DPM :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angine à répétition :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection respiratoire à répétition :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCD chirurgicaux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Réparation valvulaire :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signes fonctionnels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Début des symptômes (Age) :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnée :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angor thoracique :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigabilité :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syncope :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpitation :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanose :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatique :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signes physiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examen général :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T° :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SaO2 :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poids (kg) : (DS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taille (cm)......(DS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC (cm) :(DS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Le Remplacement valvulaire aortique chez l’enfant

<table>
<thead>
<tr>
<th>Surface corporelle : …………</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysmorphie faciale :</td>
</tr>
<tr>
<td>Oui [] Non []</td>
</tr>
</tbody>
</table>

Examen cardio-vasculaire :

<table>
<thead>
<tr>
<th>Pouls périphérique :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présent [] Ample []</td>
</tr>
<tr>
<td>Diminué [] Aboli []</td>
</tr>
</tbody>
</table>

Auscultation cardiaque :

<table>
<thead>
<tr>
<th>B1 :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal [] Eclat [] Aboli []</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B2 :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal [] Eclat [] Aboli []</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Souffle aortique :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui [] Non []</td>
</tr>
<tr>
<td>Systolique []</td>
</tr>
<tr>
<td>Diastolique []</td>
</tr>
<tr>
<td>Systo-diastolique []</td>
</tr>
</tbody>
</table>

Autres souffles associés :

<table>
<thead>
<tr>
<th>Les signes d’insuffisance cardiaque :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauche [] Droite []</td>
</tr>
</tbody>
</table>

Examen pleuropulmonaire :

<table>
<thead>
<tr>
<th>Déformation thoracique :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui [] Non []</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signe de lutte : ……………………</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hippocratisme : ……………………</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Râles à l’auscultation :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui [] Non []</td>
</tr>
</tbody>
</table>

Examen abdominal :

<table>
<thead>
<tr>
<th>Hépatomégalie :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui [] Non []</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Splénomégalie :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui [] Non []</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ascite :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Autres : …………</th>
</tr>
</thead>
</table>

Examens Paracliniques :

Radiographie pulmonaire face :

<table>
<thead>
<tr>
<th>Index cardio-pulmonaire : ……………………</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiomégalie :</td>
</tr>
<tr>
<td>Surcharge hilaire :</td>
</tr>
</tbody>
</table>

Électrocardiogramme

| Rythme : | Sinusal | ACFA |
| Autres anomalies : | ... |

Echocardiographie Trans-thoracique :

Atteinte aortique : RAo	IAo	Maladie aortique	
Surface aortique :	..		
Gradient VG-Aorte :	Moyen : Max :		
DTD VG :	...		
DTS VG :	..		
Cavités dilatées : OD	VD	OG	VG
Fraction d'éjection :	...		
Cardiopathie associée :	...		
HTAP :	Oui	Non	

Bilan biologique :

Nfs :	HB :	GB :	PLT :
TP-TCA :	Groupage sanguin :		
Fonction rénale :	Ionogramme sanguin :		

Diagnostic terminal : ...

Prise en charge :

Médical :

<p>| Diurétiques : | Oui | Non |
| Prostaglandines : | Oui | Non |
| Anti arythmique : | Oui | Non |</p>
<table>
<thead>
<tr>
<th>ATB :</th>
<th>Oui</th>
<th>Non</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiné respiratoire</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Chirurgical :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remplacement valvulaire mécanique :</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Type de valve :</td>
<td>Taille :</td>
<td></td>
</tr>
<tr>
<td>Gestes associés :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC :</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Durée totale :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée clampage Ao :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type de la cardioplégie :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sortie du CEC :</td>
<td>Simple</td>
<td>Assistance mécanique/chimique</td>
</tr>
<tr>
<td>Défibrillation :</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Complications postopératoires :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Décès :</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Cause :</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tableau 2: Tableau Récapitulatif

<table>
<thead>
<tr>
<th>Caractéristiques générales</th>
<th>n = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age moyen d’intervention (années)</td>
<td>12 (±3,5)</td>
</tr>
<tr>
<td>Age moyen de découverte (années)</td>
<td>8,4 (±4,4)</td>
</tr>
<tr>
<td>Sexe (sex ratio= 2,5)</td>
<td></td>
</tr>
<tr>
<td>Masculin</td>
<td>18 (72%)</td>
</tr>
<tr>
<td>Poids moyen (kg)</td>
<td>34 (± 12)</td>
</tr>
<tr>
<td>Surface corporelle (m²)</td>
<td>1,13 (±0,28)</td>
</tr>
<tr>
<td>Date d’intervention</td>
<td></td>
</tr>
<tr>
<td>2012–2015</td>
<td>13 (52%)</td>
</tr>
<tr>
<td>2016–2019</td>
<td>12 (48%)</td>
</tr>
</tbody>
</table>

ATCD
Consanguinité	5 (20%)
Angine à répétition	11 (44%)
Rhumatisme articulaire aigue	6 (24%)
Endocardite infectieuse	1 (4%)

Circonstances de découverte
Symptomatique
Dyspnée (NYHA)	16 (64%)
Stade II	8 (32%)
Stade III	4 (16%)
Stade IV	4 (16%)
Syncope/lipothymie/Angor	5 (20%)
Décompensation cardiaque	5 (20%)
Œdème aigue du poumon	1 (4%)

Radiographie thoracique
| Cardiomégalie | 9 (36%) |
| Surcharge hilaire | 3 (12%) |

ECG
Rythme cardiaque
| Rythme sinusal | 23 (92%) |
| ACFA | 2 (8%) |
Données ETT

- **Lésions de la valve aortique**
 - Insuffisance Aortique: 16 (64%)
 - Rétrécissement Aortique: 5 (20%)
 - Maladie aortique: 4 (16%)

- **Lésions associées**
 - Lésions mitrale: 15 (60%)
 - Communication inter ventriculaire: 6 (24%)
 - Diaphragme sous aortique: 4 (16%)
 - Lésions tricuspidie: 4 (16%)
 - Végétations valvulaires: 3 (12%)

- **FEVG moyenne (%)**: 63,6 ±12
- **HVG**: 15 (60%)

Étiologies

- **Acquises**: 15 (60%)
- **Congénitales**: 10 (40%)

Traitement chirurgical

- **CEC**: 25 (100%)
- **RVA**
 - Prothèse mécanique: 23 (92%)
 - Procédure de Ross: 2 (8%)

- **Gestes associés**
 - Elargissement de l’anneau aortique: 3 (12%)
 - Autres: 20 (80%)

Mortalité

- **Précoce**: 2 (8%)
- **Tardive**: 1 (4%)
RESULTATS
I. Caractéristiques épidémiologiques

I.1. Répartition géographique

La majorité des patients de notre série d’étude font partie de la région Fès–Meknès (Fès, Taounate, Meknès, Taza) avec un taux de 80%.

Figure 11: Répartition géographique des patients
I.2. Répartition selon le sexe

La répartition de la population de cette série d'étude est à prédominance masculine avec un taux de 72% et un sexe ratio de 2,5.

![Répartition selon le Sexe](image)

Figure 12: Répartition selon le sexe
I.3. Répartition selon l’âge

L'étude a concerné 25 patients d'âge moyen $12 \pm 3,5$ ans avec une étendue allant de 3,5 ans à 17 ans.

Le tableau ci-dessous représente la répartition des patients selon les tranches d'âges, 68% des patients se situent dans la tranche d'âge 10–15 ans.

Tableau 3: Répartition selon les tranches d'âges

<table>
<thead>
<tr>
<th>Age</th>
<th>Nombre</th>
<th>Pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moins de 10 ans</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Entre 10–15 ans</td>
<td>17</td>
<td>68</td>
</tr>
<tr>
<td>Plus de 15 ans</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 13: Répartition des patients selon les tranches d'âges
I.4. Répartition des valvulopathies aortiques

Dans notre série d'étude, on note que les lésions acquises prédominent dans la valvuopathie aortique chez l’enfant avec un taux de 60%.

Figure 14: Répartition des valvulopathies aortiques
I.5. La répartition des interventions

Dans l’unité médicochirurgicale cardio-pédiatrique de Fès, la technique de correction de la valvulopathie aortique la plus utilisée est le remplacement valvulaire par prothèse mécanique. Et en 2016, on note l’utilisation récente de la procédure de ROSS qui est une alternative prometteuse pour l’enfant.

![Diagram](image)

Figure 15: La répartition des interventions par période
II. Etude Clinique

II.1. Antécédents familiaux

- La consanguinité

Sur 25 patients de notre série, cinq patients sont issus d’un mariage consanguin, soit un taux de 20%.

![Diagram showing consanguinity distribution](image)

Figure 16 : Répartition selon la consanguinité

Autres ATCD :

Tableau 4: Les antécédents familiaux retrouvés chez nos patients

<table>
<thead>
<tr>
<th>ATCD familiaux</th>
<th>Nombre</th>
<th>Pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consanguinité</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Cardiopathies</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Décès dans la fratrie</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>HTA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>44</td>
</tr>
</tbody>
</table>
II.2. Antécédents personnels

L’histoire clinique de nos patients, révèle :

- **Antécédents médicaux**
 - Angines à répétition chez onze patients, soit 44% ;
 - Rhumatisme articulaire aigu chez six patients, soit 24% ;
 - Endocardite infectieuse chez un seul patient, soit 4%.

- **Antécédents chirurgicaux** :
 Aucun de nos patients n’a subi auparavant un geste chirurgical sur la valve aortique.

II.3. Age de découverte

La moyenne d'âge des patients à la découverte de la cardiopathie valvulaire est de 8,4 ± 4,4 ans.

II.4. Circonstances de découverte

Parmi les 25 patients, la découverte d’une valvulopathie aortique était fortuite chez 20% des cas, symptomatique chez 72% des cas, et en décompensation chez 5% des cas.

Tableau 5: les principales circonstances de découverte de la valvulopathie aortique

<table>
<thead>
<tr>
<th>Circonstances de découverte</th>
<th>Effectifs (Nbre)</th>
<th>Pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Découverte fortuite</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Symptomatique</td>
<td>18</td>
<td>72</td>
</tr>
<tr>
<td>Décompensation cardiaque</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Œdème aigu du poumon</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
a. Les signes fonctionnels

- La dyspnée est le maitre symptôme, dont 16 patients de notre série présentaient une dyspnée d’intensité variable soit un taux de 64% ;
- Fatigabilité chez 11 patients, soit 44% ;
- Douleur thoracique chez 3 patients, soit 12% ;
- Syncope chez 2 patients, soit 8% ;
- Palpitation chez 1 patient, soit 4% ;
- Sueur à l’effort chez 2 patients, soit 8% ;
- Cyanose chez 2 patients, soit 8%.

Figure 17: Caractéristiques cliniques préopératoires des patients
La dyspnée était d’intensité variable selon la classification de NYHA :

- Stade II : 8 patients, soit 32% ;
- Stade III : 4 patients, soit 16% ;
- Stade IV : 4 patients, soit 16%.

Figure 18: Répartition selon le stade de dyspnée

b. *Les signes physiques*

Dans cette série d’étude, on note à :

- **L’examen général**
 - Le poids moyen à l’intervention était 33,71±12 kg ;
 - La surface cutané moyenne était 1,12 ± 0,28 m² ;
 - Le retard staturo-pondéral est noté chez trois enfants, soit 12%.

- **Syndrome dysmorphique** :
 - La dysmorphie faciale était présente chez deux malades ; un présente un syndrome de Williams de Buren et l’autre présente le syndrome de Marfan.
L’examen cardio-vasculaire :
- Cinq patients avaient un thrill à la palpation, soit 20% ;
- Vingt–un patient avaient un souffle au foyer aortique à l’auscultation cardiaque, soit 84% ;
- Et treize patients présentaient un souffle associé, soit 52%.

Tableau 6: Résultats de l’auscultation cardiaque

<table>
<thead>
<tr>
<th>Auscultation cardiaque</th>
<th>Nombre</th>
<th>Pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Souffle au foyer aortique</td>
<td>21</td>
<td>84</td>
</tr>
<tr>
<td>Systolique</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Diastolique</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>Systo-diastolique</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Souffle au foyer mitral</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>Souffle de CIV</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>

Les signes d’insuffisance cardiaque :
- En préopératoire, quatre patients présentaient des signes périphériques d’insuffisance cardiaque droite, soit 16%. Faite essentiellement des œdèmes des membres inférieurs, de turgescence spontanée des veines jugulaires, Reflux hépato-jugulaire alors que l’hépatomégalie est retrouvée chez un seul cas.
- Les signes d’insuffisance cardiaque gauche étaient présents en préopératoire chez cinq patients ce qui représente 20% de notre série.
Autres signes concomitants

- Un patient était en poussée rhumatismale en préopératoire.
- Trois patients présentaient des signes d’endocardite évolutive en préopératoire.

III. Examens complémentaires

III.1. Radiographie thoracique

Dans notre série d’étude, l’index cardio-thoracique varie de 0,4 à 0,7 avec une moyenne de 0,54. Et on note la présence de Cardiomégalie à la radiographie thoracique chez neuf patients, soit un taux de 36%, et trois cas de surcharge hilaire, soit un taux de 12%.

Tableau 7 : Répartition des patients selon l’index cardio-thoracique

<table>
<thead>
<tr>
<th>Volume cardiaque</th>
<th>Nombre de patients</th>
<th>Pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0 = volume normal (<0,5)</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>V1 (0,50–0,55)</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>V2 (0,56–0,60)</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>V3 (0,61–0,65)</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>V4 (>0,65)</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

III.2. Electrocardiogramme

Dans notre série d’étude, 23 patients étaient en rythme sinusal, et 2 patients étaient en fibrillation auriculaire (ACFA), les autres anomalies retrouvées sont :

- Troubles du rythme : extrasystole supra-ventriculaire.
- Troubles de conduction : Bloc auriculo-ventriculaire.
- Hypertrophie du ventricule gauche, dilatation de l’oreillette gauche.
III.3. Echocardiographie Trans-thoracique

Les malades de notre série ont tous bénéficié d’une ETT, qui a permis de :
✓ Confirmer le type de la valvulopathie et évaluer sa sévérité ;
✓ Evaluer le retentissement sur les cavités cardiaques et sur leur fonctionnement ;

III.3.1. Le diagnostic positif

L’insuffisance aortique

Dans notre série d’étude, vingt–un cas présentaient une insuffisance aortique, soit un taux de 84%. La quantification de l’insuffisance aortique permet de classer les patients en quatre grades :
- Grade IV : chez onze patients, soit 44%.
- Grade III : chez un seul patient, soit 4%.
- Grade II : chez sept patients, soit 28%.
- Grade I : chez deux patients, soit 8%.

Figure 20: Répartition selon le degré de fuite aortique
Rétrécissement aortique

Dans notre série, sept patients présentaient un rétrécissement aortique. La sévérité en fonction de la surface aortique et/ou du gradient moyen trans-aortique. Le gradient moyen trans-aortique calculé chez sept patients était en moyenne de 49 ± 13 mmHg, dont cinq patients ont un Gd moyen supérieur à 40mmHg.

- RA lâche : chez un seul patient, soit 4%.
- RA modéré : chez un seul patient, soit 4%.
- RA serré : chez trois patients, soit 12%.
- RA très serré : chez deux patients, soit 8%.

![Figure 21: Répartition selon le degré du rétrécissement aortique](image)
III.3.2 – Le retentissement sur les cavités cardiaques

- **Ventricule gauche**

 - Taille du VG
 - Le diamètre télédiastolique (DTD) moyen du ventricule gauche est de $52,14 \pm 12$mm. Il varie de 30 à 70mm. 15 patients ont un ventricule gauche dilaté soit 65,21% des patients.
 - Le diamètre télé systolique (DTS) moyen du VG est de $34 \pm 6,6$ mm
 - Le diamètre télédiastolique du ventricule gauche varie en fonction des lésions du cœur gauche, avec une dilatation significative dans l’insuffisance aortique.

 Tableau 8 : La moyenne du DTD du ventricule gauche selon la lésion prédominante

<table>
<thead>
<tr>
<th>Atteinte aortique prédominante</th>
<th>DTD VG (moyenne ±ET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insuffisance aortique</td>
<td>58,7±7mm</td>
</tr>
<tr>
<td>Rétrécissement aortique</td>
<td>42±18mm</td>
</tr>
</tbody>
</table>

 - La contractilité du VG
 - La fraction d’éjection du ventricule gauche moyenne était de $63,6 \pm 12\%$ avec des extrêmes variant de 40 à 84%.
 - Quatre patients avaient une dysfonction du VG avec FE $\leq 50\%$, ce qui représente 16%.
 - La fraction de raccourcissement (FR) calculée chez nos patients varie de 27% à 51% avec une moyenne de 38,8%.
• **L’oreillette gauche :**
 - Le diamètre antéro-postérieur moyen de l'oreillette gauche est de 39 mm avec des extrêmes de 27 à 51 mm. Elle est dilatée chez treize patients, soit 56,52 % de notre série d'étude.

• **La circulation pulmonaire :**
 - On note une hypertension artérielle pulmonaire modérée à sévère chez huit patients, soit 32 %.
 - Ces patients avaient une insuffisance aortique importante avec une atteinte valvulaire mitrale associée.

III.3.3– Autres données échographiques

- Quinze patients présentaient une lésion mitrale associée, soit 60 %.
- Quatre Patients présentaient une insuffisance tricuspide associée soit 16 %.
- Quatre patients présentaient une communication inter ventriculaire (CIV), soit 16 %.
- Trois patients présentaient des végétations valvulaires, soit 12 %.
- Trois patients présentaient un épanchement péricardique, soit 12 %.
- Un patient présentait une dilatation anévrismale du bulbe aortique soit 4 %.

En somme, l'indication du Remplacement valvulaire aortique était :

Tableau 9 : L'indication opératoire selon la nature de l'atteinte aortique

<table>
<thead>
<tr>
<th>L'indication opératoire</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insuffisance aortique</td>
<td>16</td>
</tr>
<tr>
<td>Rétrécissement aortique</td>
<td>5</td>
</tr>
<tr>
<td>Maladie aortique</td>
<td>4</td>
</tr>
</tbody>
</table>
IV. Les étiologies

Les étiologies de la valvulopathie aortique chez nos patients se répartissent ainsi :

Causes acquises :
- Rhumatismale chez onze patients, soit 44%.
- Endocardite infectieuse chez trois patients, soit 12%.
- Syndrome de Marfan chez un seul patient, soit 4%.

Causes congénitales :
- Bicuspidie chez trois patients, soit 12%.
- Autres congénitales :
 * Syndrome de laubrey pezzi chez deux patients, soit 8%.
 * Diaphragme sous aortique accolé à la valve chez quatre patients, soit 16%.
 * Anévrisme de valsalva chez un seul patient, soit 4%.

Figure 22: les étiologies de l'atteinte valvulaire aortique
V. TRAITEMENT

V.1. Traitement médical:

Le traitement médical vise à stabiliser les patients en attente de la chirurgie. Ce traitement se réparti comme suit :

Tableau 10: Le traitement médical

<table>
<thead>
<tr>
<th></th>
<th>Nbre Patients</th>
<th>Pourcentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diurétique</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>Inhibiteur de l’enzyme de conversion</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Antibiothérapie</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Antiagrégant plaquettair</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>B-bloquant</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Digitaliques (digoxine)</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Les diurétiques : les diurétiques de l’anse sont les plus utilisés, généralement ils sont administrés par voie veineuse dans l’insuffisance cardiaque aigue et dans l’œdème aigue du poumon cardiogénique, et par voie orale dans le traitement de l’insuffisance cardiaque chronique au long cours.

IEC : les inhibiteurs de l’enzyme de conversion de l’angiotensine sont des vasodilatateurs, utilisés chez les patients présentant une insuffisance aortique afin de diminuer la pression artérielle diastolique et donc du volume régurgité et de ralentir la dilatation du ventricule gauche.

L’antibiothérapie : est administrée à visée curative en cas d’endocardite infectieuse.
Les antiagrégants plaquettaires : sont utilisés chez deux patients présentant des troubles de rythme cardiaque à type de fibrillation auriculaire.

Les B-bloquants : sont utilisés chez un seul malade présentant le syndrome de Marfan pour ralentir la progression de la dilatation de la racine aortique et réduire le risque de complications aortiques.

Les digitaliques (dioxine) : sont utilisés dans le traitement de l’insuffisance cardiaque en raison de son inotropisme positif, et pour contrôler la réponse ventriculaire en présence de fibrillation auriculaire.

V.2. Traitement chirurgical:

La chirurgie du remplacement valvulaire aortique se déroule sous anesthésie générale. Tous les patients ont été opérés sous circulation extracorporelle (CEC) après sternotomie médiane, et héparinisation générale (3 mg/kg). La protection myocardique a été assurée par une cardioplégie cristalloïde froide antérograde (custodiol®). La CEC a été conduite en hypothermie modérée.

a. La circulation extracorporelle :

♦ Durée de la CEC :
La durée moyenne de la CEC était de 3h04min ± 66min, avec des extrêmes de 1h07min et 5h19 min.

♦ Durée du clampage aortique :
La durée moyenne de clampage aortique était de 1h47min ± 43min, avec des extrêmes de 46min et 1h38min.

Le temps de circulation extra- corporelle et de clampage aortique était significativement, plus long chez les patients subissant la procédure de Ross non seulement par rapport à ceux recevant le RVA isolé, mais aussi par rapport aux patients recevant le RVA plus les procédures concomitantes.
Tableau 11: La durée moyenne de la CEC et du clampage aortique

<table>
<thead>
<tr>
<th></th>
<th>Temps CEC moyen (min)</th>
<th>Temps CA moyen (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVA isolé</td>
<td>182</td>
<td>131</td>
</tr>
<tr>
<td>RVA + procédures associées</td>
<td>214</td>
<td>148</td>
</tr>
<tr>
<td>Procédure de Ross</td>
<td>231</td>
<td>202</td>
</tr>
</tbody>
</table>

Arrêt de la circulation extracorporelle :

La sortie de la circulation extracorporelle était simple chez 19 patients, soit 76%. Cinq patients (20%) de notre série opérée ont eu un sevrage difficile de la CEC, avec recours aux inotropes positifs (Dobutamine et/ou Noradrénaline) chez 3 patients et à la défibrillation par choc externe chez 2 patients (8%).

Et la sortie de la CEC sous ECMO veino-veineuse, est utilisée chez un patient suite à un syndrome de détresse respiratoire aigüe (SDRA).

Tableau 12: Tableau résumant les données per-opératoire

<table>
<thead>
<tr>
<th>Données per opératoire</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temps de CEC moyen</td>
<td>3h04min ± 66min</td>
</tr>
<tr>
<td>Temps de clampage aortique moyen</td>
<td>1h47min ± 43min</td>
</tr>
<tr>
<td>Cardioplégie</td>
<td></td>
</tr>
<tr>
<td>Cristalloïde antérograde (Custodiol®)</td>
<td>25</td>
</tr>
<tr>
<td>Sortie de CEC</td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td>19</td>
</tr>
<tr>
<td>Support inotrope /choc électrique</td>
<td>5</td>
</tr>
<tr>
<td>ECMO veino-veineuse</td>
<td>1</td>
</tr>
</tbody>
</table>
b. Type de chirurgie :

Les vingt-cinq patients ont bénéficié d’un traitement chirurgical. Parmi eux, vingt-trois patients ont eu un remplacement valvulaire aortique par prothèse mécanique, soit un taux 92%, et les deux autres patients ont bénéficié d’un remplacement par l’autogreffe pulmonaire (procédure de Ross, soit un taux de 8%).

Figure 23: Remplacement de la valve aortique
Figure 24: Procédure de Ross. Unité médico-chirurgicale au CHU Hassan II
Types et tailles de prothèses aortiques :

Dans notre étude, 23 valves mécaniques ont été mises en place. Il s’agissait de 14 valves Saint Jude Medical® (44%), 3 Sorin® (13%), 3 ATS® (8%), et 1 Carbomedics® (4%).

Les valves aortiques ont été implantées en position annulaire avec des points de suture en U. La taille des valves était de 19 (n = 6), 21 (n = 9), 23 (n=5), 25 (n=1), avec une taille moyenne de 20,7 ± 1,3 mm. Types et tailles des prothèses manquent dans deux patients.

Tableau 13: Types et Tailles des prothèses utilisées

<table>
<thead>
<tr>
<th>Types</th>
<th>Nombre</th>
<th>Taille (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>St Jude Medical</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Sorin</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ATS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Carbomedics</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

c. **Gestes associés :**

Par ailleurs, dix-huit malades (72%) ont subi 22 gestes associés : huit Remplacement de la valve mitrale, cinq fermetures de CIV, quatre résections de membrane sous aortique, trois élargissements de l’anneau aortique, et une plastie tricuspide.

Une prothèse a été mise en place à l’occasion d’une intervention de Bentall.

Une prothèse a été mise en place au décours d’un échec peropératoire d’une plastie aortique.
Tableau 14: Les gestes associés pendant le remplacement aortique

<table>
<thead>
<tr>
<th>Procédures</th>
<th>Nombre de procédures</th>
<th>Nombre de patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remplacement de la valve mitral</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Fermeture de CIV</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Résection de membrane sous aortique</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Élargissement de l’anneau aortique</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Plastie tricuspide</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Intervention de Bentall</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>18</td>
</tr>
</tbody>
</table>

Figure 25: Gestes associés pendant le remplacement valvulaire aortique
V.3. Réanimation :

Tous les malades ont séjourné au service de Réanimation mère–enfant avec une moyenne de 6 jours.

La prise en charge postopératoire au cours du séjour en réanimation a nécessité:

- **Inotropes** : à la dose de :

 Dobutamine : 5–10 µg/kg/min

 Noradrénaline : 0,1g/kg/min

- **Antibiothérapie** à visée prophylactique est utilisé chez tous les malades, et à visée curative était nécessaire chez quatre malades

- **Anticoagulation** : est utilisée chez vingt-trois patients qui ont mis une prothèse mécanique

 Héparine non fractionnée (Lovenox®) à la dose de 0,1UI/10kg/12H puis relais par AVK acénocoumarol (Sintrom®).

- **Digitaliques** :

 Digoxine : était administré chez un seul patient.

- **Antiarythmiques** :

 Cordarone : à la dose de 200mg/m²/j, était nécessaire chez deux patients.

- **Diurétiques** (furosémide ou spironolactone) : sont prescrits chez quatre patients.

- **Transfusion sanguine** était nécessaire chez trois patients.

- **Kinésithérapie** : respiratoire chez deux patients, et kiné motrice chez un seul malade.
V.4. Les complications :

V.4.1. Complications précoces :

L’évolution postopératoire immédiate était favorable chez quinze patients, soit 60% des cas. Les dix patients restants ont présenté des complications diverses. Parmi ces complications, on note :

Tableau 15 : Les différentes complications en intra hospitalier

<table>
<thead>
<tr>
<th>Complications Hospitaliers</th>
<th>Valeur</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiaque</td>
<td>6</td>
<td>24%</td>
</tr>
<tr>
<td>Trouble du rythme</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ischémie myocardique</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Epanchement péricardique</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pulmonaire</td>
<td>3</td>
<td>12%</td>
</tr>
<tr>
<td>Pneumopathie</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Epanchement pleural</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Neurologique</td>
<td>3</td>
<td>12%</td>
</tr>
<tr>
<td>Confusion</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AVC ischémique</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Syndrome de Claude–Bernard–Horner</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Choc hémorragique</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>Choc septique, Septicémie</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>Autres</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>Insuffisance rénale fonctionnelle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Insuffisance hépatique transitoire</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>72%</td>
</tr>
</tbody>
</table>
V.4.2. Complications tardives :

Le suivi des patients a révélé une dysfonction du ventricule gauche chez 2 patients, un événement hémorragique chez un patient et une endocardite chez un seul cas.

V.5. Le suivi

Les patients étaient régulièrement suivis en consultation cardio-pédiatrique de notre institution. Le suivi comprend l'évaluation clinique, le contrôle échocardiographique de la fonction valvulaire et des bilans biologiques (INR) tous les 6 à 12 mois.

La durée moyenne du suivi a été de 33 mois.

La Survie actuarielle selon Kaplan–Meier était 92% à 1 mois, et 88% à 1 an.

Figure 26: Courbe de survie globale selon Kaplan Meier
Mortalité

Le taux de mortalité hospitalière dans notre série était de 8% (n=2) ; et tardive était de 4% (n=1).

L’intervention réalisée pour les trois patients était un remplacement valvulaire aortique mécanique. Le premier de ces décès a eu lieu à J1 postopératoire, dans un tableau de défaillance hémodynamique. Le deuxième patient est décédé à J2 postopératoire suite à un choc hémorragique. Le troisième patient est décédé tardivement (J60) secondaire à une endocardite infectieuse sur prothèse aortique mécanique compliquée d’un choc septique.

Tableau 16: Caractéristiques des trois patients décédés

<table>
<thead>
<tr>
<th>Patient 1</th>
<th>Année de la chirurgie</th>
<th>Type de Pathologie</th>
<th>Age de décès</th>
<th>Délai de décès</th>
<th>Cause du décès</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014</td>
<td>Valvulopathie aortique et mitrale rhumatismale</td>
<td>12 ans</td>
<td>1j</td>
<td>Défaillance hémodynamique</td>
</tr>
<tr>
<td>Patient 2</td>
<td>2014</td>
<td>Valvulopathie aortique et mitrale rhumatismale</td>
<td>12 ans</td>
<td>2j</td>
<td>Choc hémorragique</td>
</tr>
<tr>
<td>Patient 3</td>
<td>2016</td>
<td>Rétrécissement aortique sur bicuspidie</td>
<td>12 ans</td>
<td>60j</td>
<td>Endocardite infectieuse</td>
</tr>
</tbody>
</table>
DISCUSSION
I. Caractéristiques générales :

Les principales caractéristiques des vingt-trois patients ayant bénéficiés du remplacement valvulaire aortique par prothèse mécanique :

- **L’âge**

L’âge moyen de nos patients est de 12,7 ± 2,6 ans ce qui est inférieure à la moyenne d’âge des séries de Yamak[20] (moyenne de 16,57± 1,5 ans), celle de Alsoufi[21] (moyenne de 14± 3,8 ans) et celle de Khan[22] (moyenne de 14 ans). Alors qu’elle est similaire aux moyennes des autres séries, Champsaur[23] (12,8±4) et Lupenetti[24] (12,1±4,6).

Tableau 17: Age moyen au moment de l'intervention.

<table>
<thead>
<tr>
<th>Série</th>
<th>Age (moyenne± ET)/ ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre série</td>
<td>12,7±2,6</td>
</tr>
<tr>
<td>Yamak</td>
<td>16,57±1,5</td>
</tr>
<tr>
<td>Alsoufi</td>
<td>14±3,8</td>
</tr>
<tr>
<td>Khan</td>
<td>14</td>
</tr>
<tr>
<td>Champsaur</td>
<td>12,8±4</td>
</tr>
<tr>
<td>Lupenetti</td>
<td>12,1±4,6</td>
</tr>
</tbody>
</table>
- **Le sexe**

La prédominance masculine des patients de cette étude est similaire à celle constatée dans les séries d'Alsoufi [21], Alexiou [25] et Khan [22] avec des taux de 83%, 75% et 58% respectivement.

Tableau 18 : Répartition selon le sexe

<table>
<thead>
<tr>
<th>Série</th>
<th>Nombre</th>
<th>Sexe masculin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre série</td>
<td>23</td>
<td>16 (70%)</td>
</tr>
<tr>
<td>Alsoufi</td>
<td>131</td>
<td>109 (83%)</td>
</tr>
<tr>
<td>Alexiou</td>
<td>56</td>
<td>42 (75%)</td>
</tr>
<tr>
<td>Khan</td>
<td>36</td>
<td>21 (58%)</td>
</tr>
</tbody>
</table>

- **L'atteinte aortique**

On note que le rétrécissement aortique isolé est moins fréquent dans l'atteinte valvulaire aortique.

Tableau 19: Les différentes lésions aortiques

<table>
<thead>
<tr>
<th>Série</th>
<th>Rétrécissement Aortique</th>
<th>Insuffisance Aortique</th>
<th>Maladie aortique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre étude</td>
<td>5 (22%)</td>
<td>14 (61%)</td>
<td>4 (17%)</td>
</tr>
<tr>
<td>Khan</td>
<td>16 (9%)</td>
<td>54 (29%)</td>
<td>93 (49%)</td>
</tr>
<tr>
<td>Alsoufi</td>
<td>8 (6%)</td>
<td>115 (88%)</td>
<td>8 (6%)</td>
</tr>
<tr>
<td>Masuda</td>
<td>11(24%)</td>
<td>25 (55%)</td>
<td>9 (21%)</td>
</tr>
</tbody>
</table>
• Les étiologies

Dans notre étude l’étiologie principale était rhumatismale avec un taux de 48%. De même on note une prédominance de la pathologie rhumatismale dans la série de Yamak[20] avec un taux de 58,5% et Alsoufi[21]. Cependant, dans les séries de Alexiou[25], et Champsaur[23], les lésions aortiques congénitales étaient prédominante avec un taux de 83,9% et 63% respectivement.

• Le traitement chirurgical

L’indication de la chirurgie est basée sur l’estimation globale des conséquences de l’atteinte valvulaire, c'est-à-dire les symptômes ou les conséquences sur les dimensions du ventricule gauche et sa fonction.

Dans l’unité médicochirurgicale de cardiologie pédiatrique et congénitale de l’hôpital Necker Enfants Malades (Paris, France)[26] Les valves mécaniques ont été mises en place chez 57 enfants. Il s’agissait de 50 valves Saint Jude Medical® (88%), 6 Carbomedics® (11%) et 1 ATS®. La taille moyenne des prothèses était de 23 mm (entre 16 et 27mm). Seules 2 valves ont été implantées en position supra-annulaire.

Au cours du remplacement, cinquante-six gestes associés dont sept élargissements de l’anneau aortique (par la technique de Konno)

Dans notre série de l’unité Médicochirurgicale Cardiopédiatrique de CHU HASSAN II de FES,

Vingt-trois valves mécaniques ont été mises en place. Il s’agissait de 14 valves Saint Jude Medical® (44%), 3 Sorin® (13%), 3 ATS® (8%), et 1 Carbomedics® (4 %). Avec une taille moyenne de 20 mm (entre 19 et 25mm)
Le remplacement aortique isolé par prothèse mécanique est effectué chez sept patients. Vingt procédures concomitantes ont été réalisées dont trois élargissements de l’anneau aortique (13%).

Selon Masuda[27], L'utilisation des prothèses mécaniques dans le remplacement valvulaire aortique chez l’enfant se fait au prix d’un taux élevé d’élargissement de l’anneau.

Tableau 20: Procédures concomitantes réalisées pendant le remplacement valvulaire aortique

<table>
<thead>
<tr>
<th>série</th>
<th>Procédures concomitantes (%)</th>
<th>Elargissement de l’anneau aortique (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre série</td>
<td>74</td>
<td>13</td>
</tr>
<tr>
<td>Yamak</td>
<td>24,3</td>
<td>10,8</td>
</tr>
<tr>
<td>Champsaur</td>
<td>46,2</td>
<td>17</td>
</tr>
<tr>
<td>Lupenetti</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Alexiou</td>
<td>26,7</td>
<td>50</td>
</tr>
<tr>
<td>Masuda</td>
<td>31,1</td>
<td>55,5</td>
</tr>
</tbody>
</table>

Mlle. AMELI Amina
• **L’usage des AVK**

L’ensemble des patients ont été mis sous anticoagulation par anti vitamine K acénocoumarol syntrom* avec un objectif d’INR entre 2,5 et 3,5, mais dans la plupart des séries occidentaux, les patients sont mis sous warfarin sodium.

• **Mortalité**

La mortalité hospitalière dans notre série était de 8%. Ce taux est comparable aux taux de mortalité publiés dans l’étude de Yamak et lupenneti. Ce taux était plus faible dans les études publiées par Alsoufi, Mazzeteli [28] et Khan.

Tableau 21: La mortalité opératoire et tardive

<table>
<thead>
<tr>
<th>Série</th>
<th>Mortalité précoce (%)</th>
<th>Mortalité tardive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre étude</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Alsoufi</td>
<td>6</td>
<td>14,5</td>
</tr>
<tr>
<td>Mazziteli</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Lupenneti</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Khan</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Yamak</td>
<td>8,1</td>
<td>0</td>
</tr>
</tbody>
</table>

Les facteurs de risques de mortalité dans notre étude étaient essentiellement une dysfonction ventriculaire et HTAP sévère préopératoire chez 2 patients et un patient était en poussée rhumatismale.
II. L'utilisation des valves mécaniques chez l’enfant

Les prothèses mécaniques représentent pour la plupart des chirurgiens l’alternative la plus sûre pour le remplacement valvulaire chez l’enfant, et de très bons résultats ont été rapportés avec leur utilisation selon vosa[29] et sachweh[30].

D'autre part, le risque potentiel de complications thromboemboliques, le diamètre fixe de la prothèse dans l'organisme en croissance, et la nécessité d'une anticoagulation de longue durée chez l'enfant très actif, avec le risque hémorragique, représentent des inconvénients importants du remplacement valvulaire aortique par prothèses mécaniques selon mazziteli[28].

L'implantation des prothèses de petite taille chez l'enfant avec un petit anneau aortique peut créer un Mismatch patient–prothèse au fur et à mesure que l’enfant grandit.

Selon Pibarot[31], le Mismatch patient–prothèse survient quand l’orifice de la prothèse est trop petit par rapport à la surface corporelle du patient, malgré que la prothèse fonctionne normalement. La conséquence principale est de générer un gradient trans–valvulaire élevé ce qui augmente la charge pour le ventricule gauche.

Pour surmonter ce problème, plusieurs auteurs Ross[32], Champsur[23] recommandent un élargissement de l’anneau aortique chez l’enfant avec un petit anneau pour permettre d’implanter des prothèses de tailles grandes et de prévenir le mismatch patient–prothèse.

Dans la série[32], Ross procède à un élargissement postérieur si le diamètre de l’anneau aortique mesure au moins 15mm. Puis, un patch est suturé sur les bords de l’aortotomie. Ce qui permettra d’augmenter la taille de l’anneau d’environ 3 mm de diamètre pour un patch mesurant 10 mm de large.
Dans notre étude, on a opté pour un élargissement de l’anneau aortique (EAA) par la technique de Manouguian[33] à partir d’un diamètre mesure au–moins 16 mm (figure 21).

Un EAA a été nécessaire dans 3 cas, permettant l’insertion d’une prothèse de taille 21 dans deux cas, et de taille 19 dans un seul cas, avec une amélioration significative du gradient moyen trans–aortique chez les trois patients.

Tableau 22 : Caractéristiques des patients ayant bénéficiés du RVA+ EAA

<table>
<thead>
<tr>
<th>SC (m²)</th>
<th>Diamètre anneau aortique (mm)</th>
<th>Gd moyen</th>
<th>FE (%)</th>
<th>Taille de prothèse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pré</td>
<td>Post</td>
<td>Pré</td>
</tr>
<tr>
<td>1</td>
<td>1,46</td>
<td>18</td>
<td>62</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>0,87</td>
<td>17</td>
<td>45</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>0,85</td>
<td>17</td>
<td>66</td>
<td>21</td>
</tr>
</tbody>
</table>

III. Alternatives des substituts valvulaires mécaniques

Procédure de Ross

Dans ces dernières années, on constate un intérêt croissant pour le remplacement valvulaire aortique par l'autogreffe pulmonaire, selon la technique opératoire créée par Donald Ross.

Théoriquement, l'autogreffe pulmonaire est la prothèse idéale, car elle présente une bonne performance hémodynamique, ne nécessite pas d'anticoagulation, ne dégénère pas, et semble grandir avec l'enfant.

Cependant, outre la complexité de la technique d'insertion et la création d'une nouvelle pathologie dans la voie d'écoulement du ventricule droit, la performance à long terme de la valve pulmonaire dans le circuit systémique n'est toujours pas connue selon Masuda[27].

Selon Sachweh[30], l'autogreffe pulmonaire est préférable en cas d'atteinte valvulaire aortique isolée chez les nouveau-nés et les petits enfants, car les valves mécaniques de petites tailles ne sont pas disponibles.

Et selon Alsoufi[34] et Raja[35], la procédure de Ross doit être proposée dans un groupe sélectionné de patients ne présentant pas : une pathologie inflammatoire (étiologie rhumatismale), une bicuspidie aortique, une insuffisance aortique, une dilatation de l'anneau aortique et une valvulopathie associées.

Tous ces éléments sont des facteurs prédictifs d'une dysfonction de l'autogreffe pulmonaire et par conséquent un risque important de ré-opération.
De même dans notre étude, la procédure de Ross a été proposée pour des enfants de très jeune âge avec une atteinte valvulaire aortique congénitale isolée et un diamètre de l’anneau aortique inférieur ou égal à 16 mm.

Tableau 23: Caractéristiques des patients ayant bénéficié du RVA par l’autogreffe pulmonaire

<table>
<thead>
<tr>
<th>Age (Ans)</th>
<th>Diamètre AAo (mm)</th>
<th>Pathologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,5</td>
<td>Membrane sous aortique + CIV + Insuffisance aortique modérée</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Anévrisme de valsalva + CIV + Insuffisance aortique modérée</td>
</tr>
</tbody>
</table>
En somme, le choix thérapeutique se base en premier temps sur des critères cliniques (l’âge, l’étiologie, la gestion de l’anticoagulation) et en second temps sur des critères échocardiographiques (essentiellement l’atteinte aortique prédominante, isolée ou associée à d'autres lésions, le diamètre de l’anneau aortique, et l'état de la valve pulmonaire).

Figure 27 : Algorithme proposé pour le diagnostic et la gestion des petits anneaux aortiques.
CONCLUSION
Conclusion

L’atteinte valvulaire aortique acquise ou congénitale est fréquente chez l’enfant, et nécessite souvent un remplacement valvulaire. Actuellement, on dispose de deux choix thérapeutiques, le remplacement aortique par prothèse mécanique ou par l'autogreffe pulmonaire.

D’après notre étude, le remplacement valvulaire aortique par prothèse mécanique est associé à une morbi–mortalité opératoire acceptable, non liée à la prothèse, à une faible incidence d’événements hémorragiques liées au traitement anticoagulant et une bonne survie à long terme. Alors que la procédure de Ross a été proposée dans un groupe sélectionné de patients avec des résultats post-opératoires satisfaisants.

En concluant, Le remplacement valvulaire aortique mécanique est le substitut valvulaire de référence dans la population d’âge pédiatrique, malgré les contraintes de l’anticoagulation.
RESUMES
Le Remplacement valvulaire aortique chez l’enfant

Thèse N°: 118/20

Mlle. AMELI Amina

90

Résumé

Titre : Le remplacement valvulaire aortique chez l’enfant

Introduction

La chirurgie valvulaire chez la population pédiatrique constitue un véritable défi pour le chirurgien vu le petit diamètre de l’anneau aortique, la croissance somatique et l’anticoagulation à long terme.

Objectifs

L'objectif de cette étude est d'évaluer les résultats de la chirurgie du remplacement de la valve aortique chez l'enfant.

Matériels et méthodes

Il s'agit d'une étude rétrospective, menée au service de chirurgie cardio-pédiatrique au CHU Hassan II entre 2012 et 2019.

L'étude a inclus tous les patients moins de 18 ans, opérés d'un remplacement valvulaire aortique.

Résultats

Les vingt-cinq patients sont à prédominance masculine, et d’âge moyen de 12 ans (entre 3,5 – 17ans). La présentation clinique à l'admission incluait principalement une dyspnée d’effort NYHA II–IV (64% des cas), une insuffisance cardiaque (20% des cas), et un œdème aigu du poumon (4% des cas). Le diagnostic préopératoire a révélé une insuffisance aortique dans seize cas, une sténose aortique dans cinq cas, et une maladie aortique dans sept cas.

Des prothèses mécaniques ont été implantées chez 23 enfants, et deux patients ont bénéficié de la procédure de Ross.
Le remplacement de la valve aortique isolé est effectué dans sept cas, dix-huit enfants ont subi vingt-deux procédures intracardiaques concomitantes dont trois élargissements de l’anneau aortique (12%).

Les complications postopératoires avaient une incidence de 40 % toutes confondues. Le taux de mortalité postopératoire était de 8%, et tardive était de 4%.

Conclusion

Le RVA mécanique, avec un élargissement facultatif de la racine aortique, et l’anticoagulation à long terme, reste une excellente option thérapeutique chez l’enfant.
Abstract

Title: Aortic Valve Replacement in Children

Key Words: Aortic disease– Valve Replacement– Mechanical prosthesis– Ross procedure.

Introduction

Valve surgery in the pediatric population is a real challenge for the surgeon due to the small diameter of the aortic annulus, somatic growth and long-term anticoagulation.

Objectives

The aim of this study is to evaluate the results of aortic valve replacement surgery in children.

Material and Methods

This is a retrospective study, conducted in the department of cardiopediaeric surgery at CHU Hassan II between 2012 and 2019.

The study included all patients under the age of 18 years who underwent aortic valve replacement surgery.

Results

Twenty-five children (male dominated, mean age 12 between 3.5 and 17 years). Clinical presentation at admission included mainly NYHA II–IV stress dyspnea (64% of cases), heart failure (20% of cases), and acute pulmonary edema (4% of cases). The haemodynamic derangement indicating AVR was aortic insufficiency in 16 cases, aortic stenosis in five cases, and aortic disease in seven cases.

Mechanical valves were implanted in 23 children, and two patients underwent a Ross procedure. Isolated aortic valve replacement was performed in 19 cases, Concomitant procedures were performed in 18 patients (72%), including aortic root...
enlargement in 3 (12%).

Postoperative complications had an incidence of 40% all together. There were two operative death early in the series and one late death.

Conclusion

Mechanical AVR, with optional aortic root enlargement and long-term anticoagulation, remains an excellent treatment option in children.
ملخص

العنوان: استبدال الصمام الأبهري عند الأطفال

المقدم:
تمثل جراحة الصمام لدى الأطفال تحديًا حقيقيًا للجراح نظرًا لصغر قطر حلقة الأبهري والنمو الجسدي ومنع تخثر الدم على المدى الطويل.

الأهداف:
الهدف من هذه الدراسة هو تقييم نتائج جراحة استبدال الصمام الأبهري عند الأطفال.

الأساليب:
هذه دراسة استعادية، أجريت في قسم جراحة القلب للأطفال في المستشفى الجامعي الحسن الثاني بين عامي 2012 و2019.

النتائج:
شملت الدراسة جميع المرضى الذين تقل أعمارهم عن 18 عامًا والذين خضعوا لجراحة استبدال الصمام الأبهري.

هذا الدراسة استعادية، أجريت في قسم جراحة القلب للأطفال في المستشفى الجامعي الحسن الثاني بين عامي 2012 و2019.

تم زرع الصمامات الاصطناعية في 23 طفلًا، وخضع مريضان لعملية روس.

تم إجراء استبدال الصمام الأبهري المعزول في 23 حالة، وخضع ثمانية عشر طفلًا لإثنين.

تم إجراء استبدال الصمام الأبهري المعزول في سبع حالات، وخضع ثمانية عشر طفلًا لإثنين.

وشيرت عملية داخل القلب مصحوبة بما في ذلك ثلاث عمليات تكميلية للحلقة الأبهري (12%).

كان معدل الوفيات بعد العملية الجراحية 8% و معدل الوفيات المتأخر 4%، مع معدل مراضه 40%.

Mlle. AMELI Amina
الخاتمة:

يظل استبدال الصمام الميكانيكي عند الأطفال، مع التوسيع لجذر الأبهر، ومضاد التخثر طويل الأمد، خيارًا ممتازًا للعلاج عند الأطفال.
BIBLIOGRAPHIE
Le Remplacement valvulaire aortique chez l’enfant

Thèse N°: 118/20

Le Remplacement valvulaire aortique chez l’enfant

Le Remplacement valvulaire aortique chez l’enfant

Le Remplacement valvulaire aortique chez l’enfant

استبدال الصمام الأبهر عند الأطفال

(بصدع 25 حالة)

الأطروحة

قدمت و نوقشت علانية يوم 22/09/2020

من طرف

الآنسة عاملية أمينة
المزدادة في 30 غشت 1994

لنيل شهادة الدكتوراه في الطب

الكلمات المفتاحية

إصابة الأبهر - تركيبات ميكانيكية - إجراء روس

اللجنة

الرئيس: السيد مصطفى هرندو

المشارف: السيد مصطفى الكواش

أعضاء: السيد سمير عثمان

أ.د. السيد بركاي محمد عدنان

أ.د. السيد مبرز في علم التخدير والإنعاش

أ.د. السيد مبرز في علم التشريح المرضي

أ.د. السيد مبرز في علم التخدير والإنعاش

أ.د. السيد مبرز في علم أمراض القلب

أ.د. السيد مبرز في علم أمراض القلب