PLACE DE LA THYMECTOMIE DANS LA PRISE EN CHARGE DE LA MYASTHÉNIE
RÉSULTATS D'UNE ÉTUDE PROSPECTIVE AU SERVICE DE CHIRURGIE THORACIQUE DU CHU IBN SINA DE RABAT (À PROPOS DE 41 CAS)

THESE
PRESENTEE ET SOUTENUE PUBLIQUEMENT LE 15/09/2017

PAR
Mlle. ABOUTALEB Nezha
Née le 21 Décembre 1989 à Meknès

POUR L'OBTENTION DU DOCTORAT EN MEDECINE

MOTS- CLES :
Myasthénie - Thymectomie - Thymome

JURY

M. SMAHI MOHAMED... PRESIDENT
Professeur agrégé de Chirurgie thoracique

M. BOUCHIKH MOHAMED .. RAPPORTEUR
Professeur agrégé de Chirurgie thoracique

M. SOUIRTI ZOUHAYR... JUGES
Professeur agrégé de Neurologie

M. ACHIR ABDELLAH ...
Professeur agrégé de Chirurgie thoracique

M. EL OUADOUNI YASSINE ..
Professeur agrégé de Chirurgie thoracique

Année 2017

Thèse N° 177/17
INTRODUCTION .. 15
HISTORIQUE.. 18
RAPPELS ... 25

I. Anatomie du thymus : ... 26
 1. Généralités .. 26
 2. Configuration et situation du thymus .. 26
 3. Moyens de fixité ... 28
 4. Les rapports du thymus ... 28
 5. Vascularisation et innervation ... 31
 6. Fonctions du thymus .. 33

II. Physiologie de la transmission neuromusculaire : .. 35
 2.1. Anatomie fonctionnelle de la jonction Neuromusculaire 35
 - Terminaisons nerveuses présynaptiques .. 35
 - Fente synaptique ... 35
 - Membrane postsynaptique, plaque motrice .. 36
 - Le récepteur de l’ACh .. 38
 2.2. Potentiel d’action et contraction musculaire .. 40
 - Synthèse de l’acétylcholine .. 40
 - Stockage de l’acétylcholine ... 40
 - Libération de l’acétylcholine et potentiel d’action 41
 - Au niveau de la terminaison axonale : libération d’ACh 41
 - Dans l’espace synaptique ... 41
 - Du côté de la fibre musculaire : potentiel d’action 41
 - Fin de l’action de l’acétylcholine ... 42
III. Physiopathogénie de la myasthénie .. 43

3.1. Rôle des anticorps dans la myasthénie ... 43
 - Ac anti- RACH .. 43
 - AC anti- MUSK .. 44
 - Myasthénie séronégative : ... 47
 - Anticorps anti- LRP4 .. 47
 - AC anti- RACH à faible affinité ... 48
 - Anti- Rapsyne ... 48
 - auto- anticorps dirigés contre la cortactine .. 49
 - anticorps anti- agrine ... 49
 - Myasthénie triple séronégative .. 50
 - Les auto- anticorps anti- titine .. 51
 - Autoanticorps anti- récepteurs de la ryanodine (anti- RyR) 51
 - Anticorps anti- muscle strié ... 52

3.2. Rôle du thymus .. 54

3.3. Facteur génétique .. 55
 - L'antigène HLA- B8 et DR3 .. 55
 - Le gène AIRE ... 56
 - Identification de miARN dans la myasthénie liée à des auto- anticorps anti- RACH ... 57
 - Mise en évidence de facteurs de risque dans la myasthénie 58

3.4. Facteur viral ... 58
 - Virus Epstein- Barr (EBV) ... 59
 - Virus du Nil occidental ... 60
 - Polyomavirus ... 60

3.5. Facteur environnemental .. 63
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

MATERIELS ET METHODES

RESULTATS

I. Aspects épidémiologiques :
 1. L’âge :
 2. Le sexe :
 3. Interaction âge- sexe

II. Etude clinique
 1. Présentation clinique
 2. Stade clinique selon la classification MGFA

III. Etude paraclinique
 1. Electromyogramme
 2. Dosage des anticorps anti- RACH et AC anti- MUSk
 3. TDM thoracique

IV. Traitement
 1. Traitement médicaux
 2. Thymectomie
 2.1. Délai préopératoire
 2.2. Voies d’abord
 2.3. Type histologique de la lésion thymique

V. Protocole de suivi

VI. Evolution
 1. Analyse de La moyenne marginale estimée du statut MGFA 24 mois post-opératoire
 2. Analyse de La survenue de MM/ R globale
 3. Analyse des facteurs pronostiques
 3.1. L’âge

Mlle. ABOUTALEB Nezha
3.2. Le sexe ... 85
3.3. la forme clinique de la myasthénie ... 86
3.4. MGFA... 87
3.5. Traitement médical reçu .. 88
3.6. Type histologique .. 89
3.7. Délai pré-opératoire ... 91

DISCUSSION .. 93
I. Aspects épidémiologiques .. 95
 1.1. Age et sexe ... 95
 1.2. Interaction âge-sexe : .. 96
 1.3. Durée d’évolution de la myasthénie ... 97
II. Étude clinique de la myasthénie : ... 98
 1. Symptomatologie .. 98
 1.1. Chronologie des troubles ... 98
 1.2. Topographie des troubles ... 98
 1.2.1. Muscles oculaires extrinsèques ... 98
 1.2.2. Muscles pharyngo-laryngés et faciaux: ... 99
 1.2.3. Musculature axiale et périphérique .. 99
 1.3. Évolution .. 99
 ü Crise myasthénique ... 100
 ü Crise cholinergique ... 101
 1.4. Évaluation de la sévérité de la myasthénie ... 102
 2. L’examen clinique .. 103
III. Étude paraclinique de la myasthénie : ... 104
 1. Tests pharmacologiques ... 104
 1.1. Le test au Tensilon®: ... 104
1.2. Le test à la Prostigmine® ... 104

2. Explorations électrophysiologiques ... 105
 2.1. L’EMG de stimulo-détection .. 105
 2.2. Electomyographie en fibre unique .. 105

3. Examens biologiques ... 106
 3.1. Dosages immunologiques ... 106
 3.1.1. AC anti- RAch : .. 106
 3.1.2. AC anti- MUSk .. 107
 3.1.3. Anticorps anti- LRP4 .. 108
 3.1.4. Autres anticorps ... 108
 3.1.4.1. Anti RACh à faible affinité ... 108
 3.1.4.2. Anticorps anti muscles striés 108
 3.1.4.3. Anticorps anti-titine .. 109
 3.1.4.4. Anticorps anti récepteur à la ryanodine 109
 3.2. Les autres examens biologiques ... 109

4. Explorations radiologiques ... 109
 4.1 TDM ... 109
 4.2 IRM ... 110

IV. Formes cliniques ... 113
 1. Myasthénie oculaire ... 113
 2. Myasthénie juvénile ... 115
 3. Myasthénie du sujet âgé .. 115
 4. Myasthénie de l’adulte jeune ... 116
 5. Myasthénie et grossesse .. 116
 6. Myasthénie néonatale ... 117
 7. Myasthénie et pathologie thymique .. 118
7.1. L’hyperplasie thymique ... 118
7.2. Thymome ... 118
8. Myasthénie et maladies associées .. 119
9. Myasthénie séropositive .. 120
10. Myasthénie avec anticorps anti-MuSK ... 121

V. Diagnostic différentiel .. 122
1. Syndrome myasthénique ... 122
 1.1. Syndrome myasthéniforme d’Eaton-Lambert 122
 1.2. Botulisme .. 122
 1.3. Intoxication aux organophosphorés .. 123
 1.4. Envenimation par morsure de serpent 123
2. Syndromes myasthéniques iatrogènes .. 123
3. Myasthénies congénitales ... 123
4. Sclérose en plaques .. 124
5. Polyradiculonévrite aiguë ... 124

VI. Traitement .. 125
1. Objectifs ... 125
2. Moyens ... 125
 2.1. Anticholinestérasiques : .. 125
 • Les formes orales disponibles ... 126
 • Les formes sous-cutanées ... 127
 • Les formes orales à libération prolongée 127
 • Comparaison des différents inhibiteurs de l’acétylcholinestérase ... 127
 • Efficacité .. 128
 2.2. Immunothérapie au long cours .. 129
 2.2.1. Le Traitement de première ligne 129
B Corticoïdes : prednisone (Cortancyl®), prednisolone (Solupred®) .. 129

B Azathioprine (Imurel®), ... 130

B Mycophénolate de mofétil (Cellcept®),................................. 131

2.2.2. Les Traitements de seconde ligne... 131

B Rituximab.. 132

B Ciclosporine (Neoral® Sandimmun®), et Tacrolimus (Prograf®) 133

B Méthotrexate... 133

B Cyclophosphamide (Endoxan®)... 133

2.3. Immunothérapie à court terme.. 133

B Les échanges plasmatiques (plasmaphérèse) et les immunoglobulines intraveineuses.. 133

2.4. Thymectomie.. 135

2.4.1. Indications de la thymectomie... 135

2.4.2. Principe de résection.. 136

2.4.3. Voies d’abord .. 137

2.4.4. Prise en charge préopératoire... 138

\[\textit{Evaluation de la gravité de la myasthénie}
\]

\[\textit{Avertir les patients d’une possible ventilation postopératoire}
\]

\[\textit{Prémédication préopératoire}
\]

\[\textit{Conduite à tenir vis-à-vis des thérapeutiques en cours}
\]

2.4.5. Anesthésie et thymectomie... 141

\[\textit{Curares dépolarisants : suxaméthonium}
\]

\[\textit{Curares non dépolarisants}
\]

\[\textit{Surveillance instrumentale de la curarisation}
\]

2.4.6. Techniques chirurgicales... 144
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

- Thymectomie transcervicale ... 145
- Thymectomie transcervicale étendue avec section partielle du sternum ... 146
- Thymectomie trans- sternale ... 147
- Thymectomie trans- sternale et transcervicale 148
- Thymectomie vidéo assistée .. 150
- 2.4.7. Résultats ... 158
 - Période postopératoire .. 158
 - Evaluation de la rémission postopératoire 158
 - Résultats à long terme .. 159
- 2.4.8. Résultats fonctionnelle de la thymectomie 159
- 2.4.9. Facteurs influençant les résultats de la thymectomie 163

3. Avancées thérapeutiques ... 170
 - 3.1. Vaccin ... 170
 - 3.2. l'EN101 (ou Monarsen®) ... 171
 - 3.3. La thérapie cellulaire .. 172
 - 3.4. Le tirasemtiv ... 172

4. Education ... 173

VII. Suivi .. 175

CONCLUSION .. 177

ICONOGRAPHIE .. 180

ANNEXE ... 191

RESUME .. 204

REFERENCES BIBLIOGRAPHIQUES .. 210
ABREVIATIONS

<table>
<thead>
<tr>
<th>Abbr</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ach</td>
<td>Acétylcholine.</td>
</tr>
<tr>
<td>Ache</td>
<td>Acéthylocoline estérase.</td>
</tr>
<tr>
<td>Aire</td>
<td>Autoimmune regulator</td>
</tr>
<tr>
<td>Amm</td>
<td>Autorisation de mise sur le marché</td>
</tr>
<tr>
<td>Anti-MUSK</td>
<td>Anti- tyrosine kinase spécifique du muscle.</td>
</tr>
<tr>
<td>Anti- ryr</td>
<td>Anti- récepteurs de la ryanodine</td>
</tr>
<tr>
<td>Aza</td>
<td>Azathioprine</td>
</tr>
<tr>
<td>Ddl</td>
<td>Degré de liberté</td>
</tr>
<tr>
<td>Ecr</td>
<td>Essai contrôlé randomisé</td>
</tr>
<tr>
<td>Emg</td>
<td>Electromyogramme</td>
</tr>
<tr>
<td>Ep</td>
<td>Echange plasmatique</td>
</tr>
<tr>
<td>Glm</td>
<td>Modèle linéaire général</td>
</tr>
<tr>
<td>Igiv</td>
<td>Immunoglobulines en intraveineuses.</td>
</tr>
<tr>
<td>Jnm</td>
<td>Jonction neuro musculaire</td>
</tr>
<tr>
<td>Lrp4</td>
<td>Lipoprotein regulated protein 4</td>
</tr>
<tr>
<td>Mg</td>
<td>Myasthénie gravis</td>
</tr>
<tr>
<td>M-lrp4</td>
<td>Myasthénie avec anticorps anti-LRP4</td>
</tr>
<tr>
<td>M-musk</td>
<td>Myasthénie avec anticorps anti-musk</td>
</tr>
<tr>
<td>M-rach</td>
<td>Myasthénie avec anticorps anti- récepteur de l’acétylcholine</td>
</tr>
<tr>
<td>Nt-mg</td>
<td>Myasthénie non thymomateuse</td>
</tr>
<tr>
<td>Rach</td>
<td>Récepteur d’acétylcholine.</td>
</tr>
<tr>
<td>Rot</td>
<td>Reflexe ostéotendineux</td>
</tr>
<tr>
<td>T-mg</td>
<td>Myasthénie thymomateuse</td>
</tr>
<tr>
<td>Vatet</td>
<td>Video-assisted thoracoscopic extended thymectomie: Thoracoscopie video assisté étendue</td>
</tr>
<tr>
<td>Vats</td>
<td>Video-Assisted Thoracoscopic Surgery :Thoracoscopie video assisté</td>
</tr>
</tbody>
</table>
Liste des tableaux

<table>
<thead>
<tr>
<th>Tableau</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L’âge moyen des patients en fonction de leur sexe</td>
</tr>
<tr>
<td>2</td>
<td>Fréquence de la myasthénie généralisée et la myasthénie oculaire</td>
</tr>
<tr>
<td>3</td>
<td>Résultats de l’EMG</td>
</tr>
<tr>
<td>4</td>
<td>Résultats de la TDM thoracique</td>
</tr>
<tr>
<td>5</td>
<td>Symptômes cliniques lors des crises myasthéniques et cholinergiques.</td>
</tr>
<tr>
<td>6</td>
<td>Fréquence des types histologiques dans littérature</td>
</tr>
<tr>
<td>7</td>
<td>Score De Leventhal ou score de prédilection du risque de complication respiratoire postopératoire.</td>
</tr>
<tr>
<td>8</td>
<td>Les facteurs pronostiques influençant les résultats de la chirurgie, rapportés par la littérature en cas de myasthénie non thymomateuse</td>
</tr>
</tbody>
</table>
Liste des figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Article de Mary Walker édité en 1934 dans The Lancet</td>
</tr>
<tr>
<td>2</td>
<td>Thymus après thymectomie par sternotomie médiane réalisée par Pr A. BENOSMAN le 27/01/20015 à l’hôpital Ibn Sina</td>
</tr>
<tr>
<td>3</td>
<td>Anatomie et rapport du thymus</td>
</tr>
<tr>
<td>4</td>
<td>Evolution du poids du thymus chez l’homme</td>
</tr>
<tr>
<td>5</td>
<td>Présentation schématique de la transmission synaptique à la jonction neuromusculaire</td>
</tr>
<tr>
<td>6</td>
<td>Structure des récepteurs nicotiniques de l’acétylcholine</td>
</tr>
<tr>
<td>7</td>
<td>Représentation schématique de quelques constituants de la membrane post- synaptique</td>
</tr>
<tr>
<td>8</td>
<td>La surexpression de récepteurs de l’acétylcholine (RACH) après introduction de l’ARN double brin (Poly(I :C) dans la cellule épithéliale thymique</td>
</tr>
<tr>
<td>9</td>
<td>Répartition des patients en fonction de la Classification MGFA</td>
</tr>
<tr>
<td>10</td>
<td>Le test au glaçon</td>
</tr>
<tr>
<td>11</td>
<td>EMG normal et Décrément caractéristique de la myasthénie à la stimulation répétitive (3 Hz)</td>
</tr>
</tbody>
</table>
Liste des graphiques

<table>
<thead>
<tr>
<th>Graphique</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Répartition des patients en tranche d’âge, tout sexe confondu</td>
</tr>
<tr>
<td>2</td>
<td>Répartition en % des malades selon le sexe</td>
</tr>
<tr>
<td>3</td>
<td>Répartition des patients par sexe et classes d’âge</td>
</tr>
<tr>
<td>4</td>
<td>Répartition des patients en fonction de la classification MGFA</td>
</tr>
<tr>
<td>5</td>
<td>Le dosage des anticorps anti- RACH chez les patients de la série</td>
</tr>
<tr>
<td>6</td>
<td>Fréquence d’utilisation des différents traitements médicaux</td>
</tr>
<tr>
<td>7</td>
<td>Répartition des patients selon la durée d’évolution de leurs myasthénies</td>
</tr>
<tr>
<td>8</td>
<td>Les résultats des études anatomopathologiques</td>
</tr>
<tr>
<td>9</td>
<td>Analyse de La moyenne marginale estimée du statut MGFA 24 mois post- opératoire.</td>
</tr>
<tr>
<td>10</td>
<td>Analyse de La survenue de MM/ R globale</td>
</tr>
<tr>
<td>11</td>
<td>La survenue de MM/ R en fonction de l’âge</td>
</tr>
<tr>
<td>12</td>
<td>Taux cumulatif de survenue de MM/ R en fonction de l’âge</td>
</tr>
<tr>
<td>13</td>
<td>Evolution des malades en post opératoire selon le sexe</td>
</tr>
<tr>
<td>14</td>
<td>La survenue de MM/ R en fonction du MGFA</td>
</tr>
<tr>
<td>15</td>
<td>La survenue de MM/ R en fonction du traitement médical reçu</td>
</tr>
<tr>
<td>16</td>
<td>La survenue de MM/ R en fonction du type histologique</td>
</tr>
<tr>
<td>17</td>
<td>Représentation graphique de la fonction de survenue de MM/ R en fonction de l’histologie du thymus.</td>
</tr>
<tr>
<td>18</td>
<td>La survenue de MM/ R en fonction du délai pré-opératoire</td>
</tr>
<tr>
<td>19</td>
<td>Probabilité de survenue de rémission</td>
</tr>
</tbody>
</table>
Liste des iconographies

<table>
<thead>
<tr>
<th>Iconographie</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thymus ectopique</td>
</tr>
<tr>
<td>2</td>
<td>Cervicomanubriotomie. Exposition obtenue après écartement sternal.</td>
</tr>
<tr>
<td>3</td>
<td>Thymectomie par voie gauche. Utilisation de 3 trocarts ou 4 trocarts (rajout d’un trocart assistant si besoin) dans les cas complexes</td>
</tr>
<tr>
<td>4</td>
<td>Vue peropératoire de l’installation du robot.</td>
</tr>
<tr>
<td>5</td>
<td>Vue peropératoire de l’installation du robot</td>
</tr>
<tr>
<td>6</td>
<td>Iconographies du service de chirurgie thoracique. Sternotomie médiane. Pr. Bouchikh</td>
</tr>
</tbody>
</table>
Tableau des annexes

<table>
<thead>
<tr>
<th>Annexes</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Fiche d’exploitation</td>
</tr>
<tr>
<td>II</td>
<td>Médicaments contre-indiqués au cours de la myasthénie</td>
</tr>
<tr>
<td>III</td>
<td>Score myasthénique</td>
</tr>
<tr>
<td>IV</td>
<td>Diagnostic différentiel de la myasthénie</td>
</tr>
<tr>
<td>V</td>
<td>Classification Myasthenia Gravis Fondation of América (MGFA)</td>
</tr>
<tr>
<td>VI</td>
<td>Classification de De Filippi</td>
</tr>
<tr>
<td>VII</td>
<td>Classification Myasthenia Gravis Fondation of América post opératoire</td>
</tr>
<tr>
<td>VIII</td>
<td>Comparaison Immunoglobulines et échanges plasmatique</td>
</tr>
<tr>
<td>IX</td>
<td>Comparaison des différents inhibiteurs de l’acétylcholinestérase</td>
</tr>
</tbody>
</table>
INTRODUCTION
La myasthénie ou « Myasthenia Gravis » est une maladie auto-immune rare qui touche environ 10 personnes sur 100000. [1]

C’est une maladie neuromusculaire due à un dysfonctionnement du système immunitaire. La réaction auto-immune est dirigée contre des constituants de la membrane musculaire de la jonction neuromusculaire, ce qui aboutit à un défaut de transmission de l'influx nerveux.

Elle se manifeste par une faiblesse musculaire d’intensité et de durée variable pouvant toucher n’importe quel muscle. Cette faiblesse musculaire fluctuante s’accompagne fréquemment d’anomalies du thymus, sous forme d’hyperplasie chez le sujet jeune ou de thymome chez le sujet âgé.

Si elle débute à tout âge, de 6 mois à plus de 80 ans, la myasthénie affecte dans 60% des cas surtout des adultes jeunes, de moins de 40 ans, en majorité des femmes. Dans près de la moitié des cas, les premières manifestations sont purement oculaires avec ptosis et diplopie, mais après un an d’évolution chez 80 à 90 % des patients, d’autres territoires sont affectés, muscles pharyngo-laryngés et/ou muscles des membres et/ou muscles respiratoires : la myasthénie est alors généralisée. [2,3]

L’évolution de la myasthénie est capricieuse, se caractérisant habituellement par la survenue de poussées faisant parfois suite à des rémissions et une tendance à l’aggravation dans les premières années : pour 85 % des patients, le stade de gravité maximum de la maladie est atteint dans un délai inférieur à 3 ans. [4]

L’atteinte des muscles respiratoires et les troubles sévères de déglutition caractérisent les formes graves (20 à 30 % des patients).

Dans ce travail nous nous sommes intéressés à :

† Déterminer de façon prospective les facteurs pronostiques influençant les résultats de la chirurgie dans la prise en charge de la myasthénie, en rapportant
L’expérience des cas opérés au service de Chirurgie Thoracique du CHU Ibn sina de Rabat ; entre Juin 2010 et Mai 2015.

- Evaluer l’efficacité de la thymectomie.

- Comparer l’évolution des myasthéniques sans thymome avec celle des myasthéniques avec thymome.

- Comparer les résultats de notre étude à la littérature médicale.
HISTORIQUE
La première observation connue de myasthénie semble être celle du chef indien Opechancanough, un redoutable guerrier responsable de nombreux massacres de colons européens établis à Jamestown en Virginie. Il fut capturé en 1644 et son cas a fait l’objet de nombreux rapports envoyés en Angleterre. On y apprend que l’individu souffre d’une fatigue excessive, ses muscles perdent leur tonicité et leur élasticité et ses paupières sont tellement lourdes que ses yeux se ferment et pour regarder devant lui, il est obligé de les relever avec ses mains. Une amélioration des troubles est observée après un repos de quelques heures [5,6].

La littérature médicale retiendra cependant la description de la maladie sous l’appellation de «paralysia supria non habitualis» faite en 1672 dans le célèbre ouvrage de Thomas Willis, d’Oxford : “De Anima Brutorum”. On peut y lire l’observation d’une femme souffrant d’une faiblesse musculaire, marquée surtout par une perte temporaire de l’usage de la parole. Les symptômes s’améliorent après le repos nocturne mais s’aggravent en fin de journée [7].

En 1879 et en 1893 respectivement, Erb et Goldflam observent la fluctuation des symptômes et leur aggravation durant la journée. Ils notent une atteinte sélective des muscles oculaires et de certains muscles crâniens. La myasthénie est isolée alors, comme une entité clinique dénommée «maladie d’ERB-GOLDFLAM» [8].

En 1895, Jolly eut le double mérite de proposer l’appellation de «Myasthénia gravis pseudo-paralytica » et de démontrer l’épuisement de la contraction musculaire sous l’effet de stimulations électriques répétitive. Il a remarqué des analogies existant entre cette maladie et l’intoxication par le curare et a proposé l’utilisation d’anti-cholinestérases pour le traitement de l’affection. [9]

En 1899, la Société Berlinoise de Psychiatrie et Neurologie accepta l’appellation définitive de “myasthenia gravis”. Celle-ci est dérivée du grec “mys” (muscle), “astenia”
(faiblesse) et du latin “gravis” (sévère). En France on se limitera à l’appellation de myasthénie.

Dès 1899, Hermann Oppenheim observa que la myasthénie est souvent associée à une tumeur du thymus appelée thymome [10,11].

En 1901, Laquer et Weigert observent l’association entre thymome et myasthénie [10,11].

En 1905 ; Buzzard identifie une infiltration de lymphocytes (phénomène qu’il dénomme lymphorrhagie) dans les fibres musculaires de certains patients myasthéniques. Il constate également une augmentation du nombre des lymphocytes dans le thymus [12].

La similitude entre la myasthénie et l’action du curare, un poison d’origine végétale dont les indiens d’Amérique du Sud enduisent la pointe de leurs flèches, est notée par Hermann Oppenheim en 1908.

La thymectomie fut réalisée pour la première fois par Ferdinand Sauerbruch à Zurich en 1911 et amena une amélioration nette de la fonction musculaire [13,14].

Un pas important fut franchi grâce à une neurologue anglaise, Mary Walker, exerçant à l’Hôpital St Alfege de Londres. En 1934, celle-ci obtint une amélioration « miraculeuse » de l’état d’une patiente myasthénique de 57 ans par l’injection de quelques gouttes de solution de physostigmine. Une heure après l’injection, les mouvements des bras sont plus intenses et les paupières se relèvent (figure 1) [15].

La grande presse se saisit de ce succès thérapeutique et l’appellera « Miracle de St Alfege ». Mary Walker travailla en étroite collaboration avec la firme Hoffmann-Laroche, ce qui aboutira au développement d’une préparation orale d’un analogue de la physostigmine, la pyridostigmine (Mestinon®).
TREATMENT OF MYASTHENIA GRAVIS WITH PHYSOSTIGMINE

To the Editor of The Lancet

Sir,—The abnormal fatiguability in myasthenia gravis has been thought to be due to curare-like poisoning of the motor nerve-endings or of the "myoneural junctions" in the affected muscles. It occurred to me recently that it would be worth while to try the effect of physostigmine, a partial antagonist to curare, on a case of myasthenia gravis at present in St. Allege’s Hospital, in the hope that it would counteract the effect of the unknown substance which might be exerting a curare-like effect on the myoneural junctions. I found that hypodermic injections of physostigmine salicylate did have a striking though temporary effect.

Mrs. M., aged 58, had had a previous attack of myasthenia gravis, lasting about six months, 14 years ago. Gastric ulcer four years ago. Non-specific infective arthritis seven months ago, now improved.

Towards the end of last February she found that she was unable to hold her shopping bag, and that her head used to fall forwards when she knelt to do the hearth. She had to remain in bed after March 15th, and had difficulty in sitting up. Her jaw then began to droop, she had to hold it up with her hand, and the left eyelid began to droop. Speech became indistinct when she was excited, swallowing was difficult, and fluid sometimes regurgitated through her nose. She was admitted to the hospital on March 25th, and a few days later weakness came on in the middle and ring fingers of both hands. The weakness is much increased by excitement, and is lessened by rest. It becomes worse as the day goes on. There is no wasting, and the tendon reflexes are all present. The masseters respond slightly or not at all to faradism; a myasthenic reaction has been obtained in the left deltoid. Radiograms show obsolete pulmonary tuberculosis. The thymus is not enlarged.

On April 11th treatment with hypodermic injections of physostigmine salicylate, gr. 1/60 once a day, was begun. In from half an hour to an hour after the injection the left eyelid “goes up” (see Figure), arm movements are much stronger, the jaw drops rather less, swallowing is improved, and the patient feels “less heavy.” The effect wears off gradually in from 2–4 hours. With injections
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Thèse N° : 177/17

Mlle. ABOUTALEB Nezha

Figure 1: Première utilisation de la phytostigmine pour traiter la myasthénie : article de Mary Walker édité en 1934 dans The Lancet
La même année, Dale et Feldberg établissent que l’acétylcholine est libérée dans la jonction neuromusculaire [16].

Dès 1935, la néostigmine administrée oralement a été proposée comme traitement de la myasthénie [17].

En 1911, le chirurgien allemand Ferdinand Sauerbruch introduit le premier traitement efficace de la maladie en réalisant une thymectomie à l’hôpital universitaire de Zürich chez une patiente de 20 ans atteinte à la fois d’une myasthénie et d’une hyperthyroïdie [13,18]. Vingt-cinq ans plus tard, le chirurgien américain Alfred Blalock, pionnier de la chirurgie thoracique et cardiaque perfectionne et contribue à développer cette opération délicate et risquée en raison des complications fréquentes de l’anesthésie chez les patients myasthéniques. Le 26 mai 1936, Blalock opère avec succès une jeune fille de 19 ans atteinte d’une forme généralisée de myasthénie, associée à un thymome réfractaire à la radiothérapie [19,20].

En 1939, Blalock démontra l’évolution favorable de patients myasthéniques après thymectomie [21].

En 1960, le concept de maladie auto-immune a été proposé indépendamment par deux groupes de chercheurs, Simpson et Nastuk et leurs collaborateurs [22,23]. Astucieusement Simpson suggère sans aucune preuve que des anticorps anti-récepteurs à l’acétylcholine bloquent la transmission neuromusculaire.

En 1971, Fambrough et ses collaborateurs démontrent le déficit en acétylcholine au niveau de la jonction neuromusculaire [24].

En 1973, un modèle de myasthénie aiguë expérimental confirmait l’hypothèse que la myasthénie est d’origine auto-immun : des lapins immunisés avec des récepteurs purifiés de l’acétylcholine de poissons torpilles avaient une symptomatologie myasthénique et produisaient des AC, entraînant des dommages structuraux et fonctionnels de la synapse [25].
En 1975, les anticorps anti-récepteurs de l’acétylcholine (anti-RACh) sont mis en évidence dans le sérum des personnes atteintes de myasthénie.

Arthur Strauss met en évidence des anticorps qui se fixent sur les fibres du muscle strié. Ce ne sera qu’en 1990 qu’Aarli va montrer que l’antigène cible de ces anticorps est le titin ou connectine, une protéine géante présente dans les myofibrilles du muscle squelettique [26]

En 1992, Mygland identifie un autre autoantigène reconnu par le sérum des malades myasténiques, le récepteur de la ryanodine, appelé ainsi à cause des propriétés inhibitrices de cet alcaloïde végétal sur les canaux calciques exprimant ce récepteur [27]

En 2001, un nouvel auto-anticorps anti-Musk (anticorps anti-muscle specific tyrosine kinase) a été mis en évidence chez 40 % des patients avec myasthénie séronégative [28].

En 2004, Garchon et ses collaborateurs ont découvert une corrélation significative entre l’haplotype 8.1 du complexe HLA et les anticorps anti-récepteurs de l’acétylcholine chez les patients atteints de myasthénie auto-immune. [29]

En 2016, une conférence sur la myasthénie a été organisée à Oxford (Royaume Uni). Elle a été spécialement consacrée aux résultats de l’étude randomisée de la thymectomie associée à la prise de corticoïdes afin de savoir si les personnes ayant eu une thymectomie prennent des doses plus faibles de corticoïdes que celles n’ayant pas eu de thymectomie.[30]
RAPPEL
I. **Anatomie du thymus**

1. **Généralités**

 Le thymus est un organe lymphoïde primaire de couleur grisâtre formée de deux lobes accolés l’un à l’autre, quand son développement est achevé. Il est fonctionnel pendant la vie intra-utérine et les trois premières années de la vie extra-utérine, jouant un rôle important dans les différents processus de coordination du développement du système immunologique. À l’âge de 3 ans le thymus commence son involution. Après la puberté, il est en majeure partie remplacé par le tissu adipeux tout en conservant une partie significative de sa fonction jusqu’à un âge avancé [2]

2. **Configuration et situation du thymus**

 Le thymus est une glande impaire et médiane. Il occupe la partie antéro-inférieure du cou et le médiastin antéro-supérieur, se projetant entre le 4ème cartilage costal et le bord inférieur de la thyroïde.

 Contenu dans la loge thymique, le thymus est composé de deux lobes pyramidaux dont la base repose sur le péricarde et dont le sommet se prolonge dans la partie inférieure du cou.

 Il pèse 15 g à la naissance, 40 g à la puberté et 10 g chez le sujet âgé. Il mesure 5cm de long sur 4cm de large et 1cm d’épaisseur. Sa consistance est molle et sa couleur, grisâtre chez l’enfant, devient jaunâtre chez l’adulte parce que l’organe est progressivement infiltré de tissu adipeux. C’est l’élément le plus antérieur, derrière le manubrium sternal, débordant la fourchette sternoïdale de 1 cm jusqu’à l’âge de deux ans.
Classiquement on distingue deux lobes pour le thymus, les uni lobaires sont plus rares 3,4%. Des études de dissections réalisées soulignent la grande variabilité morphologique de cet organe compact, à grand axe vertical.

Les formes les plus habituelles correspondent aux thymus en “H” dans 35% des cas (figure 2), Les formes en “V” dans 25% Dans 15% des cas des aspects échappant à toute description

Chaque lobe est enveloppé d’une capsule fibreuse. De la face interne de cette capsule partent des septas conjonctifs qui s'enfoncent plus ou moins profondément dans le parenchyme et le divisent en nombreux lobules. Chaque lobule comprend une zone périphérique sombre, le cortex, et une région centrale claire, la médullaire dans laquelle on distingue de petites zones colorées en rouge, les corpuscules de Hassall.

Thymus après thymectomie par sternotomie médiane réalisée par Pr A.

BENOSMAN le 27/01/20015 à l’hôpital Ibn Sina

![Figure 2](image-url)
3. **Moyens de fixité** :

La fixité du thymus est assurée par :

- La loge thymique ; ostéo- aponévrotique
- Les ligaments, solidarisant la capsule à la loge :
 - Ligaments supérieurs, thyro- thymiques, reliant les pôles inférieurs des 2 lobes thyroïdiens aux extrémités supérieures des 2 cornes cervicales.
 - Adhérences très serrées, thymo- péricardiques, entre cornes inférieures du thymus et face antérieure du péricarde,
 - Les vaisseaux du thymus, enfin, notamment les veines thymiques (très courtes) qui se jettent directement dans le tronc veineux brachio- céphalique gauche.

4. **Rapports** :

Le thymus (et ses vaisseaux) sont contenus dans une loge ostéo- aponevrotique : la loge thymique.

La loge thymique :

Elle occupe le médiastin antéro- supérieur et déborde dans la région cervicale basse. (Figure 3)

Elle est limitée par :

- En avant et en haut : le feuillet profond de la lame pré- trachéale du fascia cervical, prolongé en bas par la lame fibreuse pré- thymique (tapissant la face postérieure du manubrium sternal et des articulations sterno- costales adjacentes)
- En avant et en bas : le ligament sterno- péricardique supérieur
- En arrière :
La lame thyro-péricardique, tendue de l’isthme de la thyroïde à la face antérieure du péricarde, contenant dans son épaisseur le tronc veineux brachio-céphalique gauche et les veines thyroïdiennes inférieures.

Tout en bas, la face antérieure du péricarde.

Latéralement : des expansions fibreuses, tendues entre les troncs veineux brachio-céphaliques, les vaisseaux thoraciques internes et le plastron sternocostal.

Par l’intermédiaire de la loge :

Le thymus est en rapport avec :

A. **Au niveau cervical : (cornes supérieures)**

 En avant :

 Les plans de couverture, avec, de la superficie à la profondeur :

 - La peau et le tissu cellulaire sous-cutané.

 - La lame superficielle du fascia cervical, engainant latéralement les muscles sterno-cléido-mastoïdiens.

 - La lame pré-trachéale du fascia cervical, engainant les muscles sous-hyoïdiens médians

 Latéralement : les 2 plèvres vasculo-nerveux principaux du cou (contenus dans les gaines vasculaires)

 En haut : les pôles supérieurs de la thyroïde, avec les ligaments thyro-thymiques.

 En arrière, la trachée

B. **Au niveau thoracique : (corps et cornes inférieures)**

 1. En avant : les plans de recouvrement, avec, de la superficie à la profondeur :

 - La peau et le tissu cellulaire sous cutané.
- Le plastron sterno-costal (la projection du thymus ne dépasse pas latéralement la verticale menée par les premières articulations chondro-costales)
- Les vaisseaux thoraciques internes, à moins d’un centimètre du bord latéral du manubrium sternal.

2. Latéralement :
- La plèvre médiastinale
- Les nerfs phréniques, accompagnée des vaisseaux phréniques supérieurs

3. En arrière, 2 étages :
- Etage supérieur, avec de la superficie à la profondeur :
 - un plan veineux : les 2 troncs veineux brachio-céphaliques
 - un plan artériel, avec les 2 premières branches du segment II de l’aorte :
 tronc artériel brachio-céphalique et artère carotide commune gauche
- Etage inférieur, avec
 - A droite : le plan veineux : veine cave supérieure
 - A gauche : le plan artériel : l’aorte horizontal, puis recouverts par le péricarde, le pédicule artériel et la face antérieure des ventricules

Le thymus descend souvent plus bas à gauche qu’à droite.
5. **Vascularisation et innervation**

- Le thymus est vascularisé par des branches des artères : thoraciques internes, thyroïdiennes inférieures et phréniques supérieures.
- Les veines thymiques se jettent dans le tronc veineux brachio-céphalique gauche et accessoirement dans les veines thyroïdiennes inférieures, thoraciques internes et phréniques supérieures.
- L’innervation du thymus est assurée par des branches du plexus sympathique médiastinal antérieur et supérieur et par le para-sympathique péri-artériel.
Anatomie et rapport du thymus

Figure 3

6. **Fonctions du thymus** :

Les principales fonctions du thymus sont :

- Le développement de l’immunocompétence des lymphocytes T à partir des précurseurs cellulaire T dérivés de la moelle osseuse, pour aboutir aux cellules Th et Tc matures.
- La prolifération de clones de cellules T natives matures pour alimenter le pool de lymphocytes circulants et les tissus périphériques.
- Le développement de la tolérance immunologique aux « antigène du soi ».
- La sécrétion d’hormones et d’autres facteurs solubles qui régulent la maturation, la prolifération et la fonction des cellules T à l’intérieur du thymus et dans les tissus périphériques. Il existe au moins 4 polypeptides à caractère hormonal, appelés : thymoline, thymopoïétine, β4 et α1 thmosine.
Evolution du poids du thymus chez l'homme

Figure 4
II. **Physiologie de la transmission neuromusculaire**

La compréhension des bases anatomiques et le fonctionnement normal de la jonction neuromusculaire permettent de mieux comprendre l’étiopathogénie de la myasthénie auto-immune.

2.1. **Anatomie fonctionnelle de la jonction Neuromusculaire**

La jonction neuromusculaire est l’ensemble des contacts synaptiques entre l’arborisation terminale d’un axone moteur et une cellule musculaire striée. L’organisation musculaire se fait par « unités motrices » : un motoneurone innervé trois à 1000 fibres musculaires via son axone. Les motoneurones ont leur corps cellulaire dans les noyaux moteurs du tronc cérébral ou dans la corne ventrale de la moelle épière. Les axones de ces neurones, myélinisés, forment les nerfs moteurs crâniens ou rachidiens qui innervent les muscles striés squelettiques.

Terminaisons nerveuses présynaptiques

Au voisinage immédiat de la fibre musculaire squelettique, les axones des nerfs moteurs myélinisés perdent leur gaine de myéline et se ramifient en branches fines qui établissent des contacts avec la fibre musculaire. Les terminaisons nerveuses présynaptiques sont riches en vésicules, concentrés au niveau de barres denses aux électrons. Elles renferment de l’acétylcholine. L’ensemble barre denses—vésicules synaptiques forme une « zone active présynaptique », en face des replis de la membrane plasmique postsynaptique. Chaque zone active avec les replis du sarcolemme qui lui font face forme un complexe synaptique.

Fente synaptique

La fente synaptique est un espace étroit (200 Å), de 30 à 50 nm d’épaisseur, 50 à 100 nm de largeur, sépare les membranes de la terminaison axonale de la cellule.
musculaire. Elle contient une lame basale synaptique spécifique, dont la molécule clé est l’acétylcholinestérase.

Membrane postsynaptique, plaque motrice

L’ensemble des fibres musculaires squelettiques est recouvert par une matrice extracellulaire, épaisse et reconnaissable en microscopie électronique, appelée la lame basale, celle-ci renferme l’acétylcholinestérase, enzyme qui permet l’hydrolyse de l’ACh en choline et en acétate dans la fente synaptique.

L’acétylcholinestérase est ancrée à la lame basale par un collagène Q particulier (ColQ) qui est nécessaire au contrôle temporel de la transmission synaptique. De plus, un ensemble de glyco-conjugués et de molécules de signalisation, comme l’agrine et la neuréguline, est aussi présent.

La membrane post-synaptique de la fibre musculaire est enfoncée dans des gouttières peu profondes, sous la terminaison nerveuse, et s’invagine dans des plis sous synaptiques d’environ 1 à 3 µm de profondeur qui s’ouvrent directement en face des zones actives de l’élément présynaptique.

Cette membrane dite «jonctionnelle» présente une forte densité de récepteurs nicotiniques de l’ACh. Ces récepteurs sont concentrés au niveau des crêtes des plis sous-synaptiques.
Présentation schématique de la transmission synaptique à la jonction neuromusculaire

Figure 5
o Le récepteur de l’ACh

Le récepteur de l’acétylcholine (RACh) est de type nicotinique. C’est un complexe protéique transmembranaire de 290 kDa résultant de l’assemblage de cinq sous-unités polypeptidiques (pentamère) délimitant un canal ionique central. Les sous-unités, codées chacune par un gène différent, ont la configuration $2\alpha, 1\beta, 1\delta, 1\epsilon$ (récepteur de type adulte) ou $2\alpha, 1\beta, 1\delta, 1\gamma$ (récepteur de type fœtal ou fibre dénervée). Chacune des sous-unités a quatre domaines transmembranaires (M1–M4), les domaines N-terminal et C-terminal étant extracellulaires. (Figure 6)

C’est le domaine M2 de chacune des sous-unités qui participe à la constitution du canal ionique. Un site de liaison de l’acétylcholine (ACh) est situé sur chacune des deux sous-unités α, en position 192–193, correspondant à un pont disulfure entre des résidus cystéine. La demi-vie des récepteurs adultes est de quatre à six jours.

La fixation d’une molécule d’ACh sur chacune des deux sous-unités α provoque une modification de conformation de type allostérique du récepteur dont la conséquence est une ouverture du canal ionique et une dépolarisation par entrée de Na et sortie de K.

La liaison de l’ACh à son récepteur est labile et la dissociation de cette liaison est suivie de l’hydrolyse de l’ACh par l’acétylcholinestérase (AchE) présente dans la fente synaptique au niveau de la membrane basale. Cette hydrolyse conduit à la formation d’acétate et de choline, cette dernière étant reprise par la terminaison axonale et utilisée pour la resynthèse de l’ACh.
Structure des récepteurs nicotiniques de l’acétylcholine.

Figure 6

A. Sous-unité α (NH2 : extrémité N-terminale ; COOH : extrémité C-terminale).

B. Complexe pentamérique.

Chaque sous-unité comprend quatre domaines hélïcoïdaux M1 à M4.

Les domaines M2 forment la paroi du canal ionique. Les molécules d’acétylcholine se fixent aux extrémités N-terminales des unités

$\alpha - \delta$ et $\alpha - \epsilon$ Le canal ionique ouvert est également perméable au sodium (Na) et au potassium (K), mais peu au calcium (Ca).
2.2. **Potentiel d’action et contraction musculaire**

Synthèse de l’acétylcholine

L’acétylcholine est synthétisée dans le cytoplasme de la terminaison nerveuse à partir de l’acetyl coenzyme A et de la choline, par une réaction catalysée par la choline acetyltransferase :

- La choline acetyltransferase est une enzyme produite dans les ribosomes du corps cellulaire des motoneurones, puis transportée le long de l’axone vers les terminaisons.
- L’acétylcoenzyme A est synthétisée dans les mitochondries des terminaisons à partir du pyruvate, provenant de la dégradation du glucose (cycle d’Embden-Meyerhoff), puis traverse la paroi mitochondriale en mettant en jeu une phospholipase A2.
- La choline qui entre dans la synthèse de l’ACh est d’origine plasmatique et est puisée essentiellement dans le milieu extracellulaire par un système de transport à haute et à faible affinité, selon l’état fonctionnel de la terminaison. La choline provenant de l’hydrolyse de l’ACh participe également à la synthèse d’ACh.

Stockage de l’acétylcholine :

Une fois synthétisée au niveau du cytoplasme des terminaisons, l’ACh est transportée du cytoplasme à l’intérieur des vésicules synaptiques claires. L’ACh des terminaisons est donc répartie dans deux compartiments, l’un cytoplasmique, l’autre vésiculaire.

Un grand nombre de vésicules ne sont mobilisées qu’en cas de stimulation nerveuse à haute fréquence (tétanos ou effort). Pour chaque vésicule mobilisable, on dénombre 100 à 200 vésicules de Synthèse d’ACh.
Libération de l’acétylcholine et potentiel d’action

- Au niveau de la terminaison axonale :

La dépolarisation de la membrane de la terminaison axonale par l’influx nerveux induit l’ouverture de canaux calciques voltages-dépendants. L’élévation de la concentration cytosolique de Ca2+, détectée notamment par la synaptotagmine (une protéine vésiculaire), déclenche en moins de 100 μsec la fusion de la vésicule synaptique à la membrane plasmique ; ce qui permet au contenu vésiculaire de diffuser dans l’espace synaptique.

La libération du contenu d’une vésicule présynaptique (un quantum) provoque un potentiel miniature postsynaptique de 0,5 à 1 mV. Un influx nerveux provoque la libération de 20 à 200 quanta. L’amplitude du potentiel postsynaptique ainsi généré, somme des potentiels miniatures postsynaptiques, est de 15 à 20 mV [31,32].

- Dans l’espace synaptique

L’acétylcholine diffuse et se lie aux récepteurs postsynaptiques.

Au repos, le récepteur nicotinique laisse passer les ions potassium mais pas les ions sodium. Cette différence de perméabilité est responsable du potentiel de repos postsynaptique de −90 mV. L’activation du récepteur ouvre le canal ionique et les mouvements du sodium et du potassium s’effectuent librement : le potentiel de membrane local chute, par entrée massive de sodium.

- Du côté de la fibre musculaire : potentiel d’action

L’afflux d’ions sodium dans la fibre musculaire au niveau de la zone de jonction (plaque motrice) produit une dépolarisation locale, appelée potentiel de plaque motrice. Lorsque ce potentiel atteint une valeur seuil, il induit l’ouverture de canaux sodium voltage-dépendants, générant ainsi un potentiel d’action musculaire qui se propage le long du sarcolemme et ouvre les canaux calciques voltage-dépendants. Le couplage de cette action avec la libération de calcium par le réticulum sarcoplasmique
(récepteurs canaux à la ryanodine) déclenche les phénomènes chimiques et mécaniques de la contraction de la fibre musculaire. L’entrée lente et tardive de potassium restaure le potentiel de membrane et met fin à la contraction [31].

- Fin de l’action de l’acétylcholine

L’acétylcholinestérase, présente dans l’espace synaptique, hydrolyse l’acétylcholine et neutralise son action en moins de 5 ms. La membrane redevient sélective aux différents éléments, la pompe à sodium—potassium entre en jeu pour rétablir ainsi l’équilibre antérieur. La fibre musculaire, après avoir retrouvé la différence de potentiel qui la caractérise au repos, est alors susceptible de répondre à une nouvelle émission de transmetteur.
III. Physiopathogénie de la myasthénie

La myasthénie est une maladie multifactorielle d'étiologie génétique et environnementale. La physiopathologie de la myasthénie est en partie éclaircie et s'articule autour de deux acteurs essentiels : des anticorps pathogènes et le thymus.

3.1. Rôle des anticorps dans la myasthénie

Le système immunitaire fabrique des auto-anticorps contre le récepteur de l'acétylcholine (RACh), contre le récepteur tyrosine kinase musculaire "MuSK", ou encore contre la protéine LRP4, une protéine associée à la protéine MuSK. Toutes ces protéines sont situées à la jonction neuromusculaire.

- **Anticorps anti-RACh**:

 Trois quarts des patients présentant une forme généralisée de toute gravité et de tout âge et la moitié de ceux avec une forme oculaire ont des anticorps anti-RACh, polyclonaux détectées par immunoprécipitation.

 Ces anticorps induisent une réduction du nombre de RACh et, par voie de conséquence, une perte de la marge de sécurité de la transmission neuromusculaire. Des corrélations ont été montrées entre la sévérité de la maladie et la perte en RACh mesuré au niveau des biopsies musculaire [33], mais pas avec le taux d’anticorps [34].

 Quatre modes d’action des auto-anticorps anti RACh ont été décrits :

 - Blocage du site de fixation de l'acétylcholine (effet de type curare).
 - Dégradation accélérée du RACh membranaire (modulation antigénique) : Il existe des remaniements structurels de la fente synaptique qui est élargie et « simplifiée » (effacement des replis du sarcolemme), ce qui expose davantage les molécules d’ACh à l’action de l’AChE avant qu’elles n’atteignent les RACh.
• Destruction par le complément de la membrane post-synaptique par le complexe d’attaque membranaire du complément [35].

• Les auto-anticorps anti-RACH augmentent la production d’interleukine 6 :

Une analyse de la transcription de muscles de personnes atteintes de myasthénie liée à des auto-anticorps anti-RACH ou du modèle expérimental de rat a révélé l’implication de la voie IL-6. Des analyses complémentaires montrent que les auto-anticorps anti-RACH provoquent une forte augmentation de la production d’interleukine 6 dans les muscles étudiés. Ces résultats suggèrent ainsi un nouveau mécanisme d’action des auto-anticorps anti-RACH au niveau musculaire. [36]

Ni le taux d’anticorps anti-RACH ni le répertoire antigénique reconnu par ces anticorps ne sont corrélés à la sévérité de la maladie [34].

Le titre d’anticorps est étroitement lié à l’histologie thymique [37]. Le taux d’anticorps le plus élevé se retrouve dans les hyperplasies lymphoïdes thymique du sujet jeune. Il est considéré comme toujours positif à des taux intermédiaires dans les myasthénies associées à des thymomes. Le taux s’avère faible ou nul en cas de thymus involutif surtout après 40 ans.

40% à 60% des patients atteints de MG généralisée n’ont pas d’anticorps contre les RACH ; Cependant, étant donné que la plasmaphérèse est aussi active chez ces patients, on admet qu’il doit exister des anticorps différents de ceux contre les RACH.

Il s’agit d’anticorps IgG dirigés contre une autre molécule post-synaptique, MuSK

Anticorps anti-MuSK

MuSK est une tyrosine-phospho-kinase impliquée dans la transcription du RACH et dans son ancrage membranaire :

Au cours de la formation de la jonction neuromusculaire, les RACH se regroupent dans la zone de la future jonction neuromusculaire au niveau de la
membrane des cellules musculaires. Ce regroupement se fait notamment grâce à la présence du récepteur tyrosine kinase spécifique du muscle, MuSK.

La protéine MuSK joue un rôle majeur dans le développement de la jonction neuromusculaire [38] et est indispensable au processus d’agrégation des RACH à la membrane musculaire sous l’action de l’agrine neuronale : aucun agrégat du RACH ne peut se former en son absence. [39]

Or pour être activé, MuSK doit interagir avec LRP4.

Dans deux articles publiés en novembre et en décembre 2013, deux équipes, l’une britannique et l’autre américano-hollandaise, se sont intéressées aux mécanismes d’action des auto-anticorps anti-MuSK dans la myasthénie auto-immune. Ils constatent, en particulier, que les auto-anticorps anti-MuSK interrompent les interactions de MusK avec LRP4 et réduisent le regroupement de RACH à la jonction neuromusculaire contribuant ainsi au développement de la myasthénie anti-MuSK [40,41].

Ces anticorps peuvent être transférés de l’homme à la souris via le sérum ou les immunoglobulines. Les animaux développent alors une faiblesse musculaire et un décrément du potentiel d’action après une stimulation répétitive. L’analyse détaillée des plaques motrices révèle que les animaux ont une densité de RACH réduite et que l’alignement entre la terminaison nerveuse et la membrane post-synaptique est modifiée [9]. Les anticorps anti-MuSK sont de type IgG4, une entité qui ne lie pas le complément.

Environ 40-60% des patients ayants une myasthénie auto-immune sans auto-AC anti Récepteur de l’ACh, (dite auparavant séronégative) ont des Ac anti-MuSK. [10]

La myasthénie à Ac anti-MuSK est une entité particulière ayant une spécificité clinique, diagnostique, physiopathologique, pronostique ainsi que thérapeutique, qui la différencie de la classique myasthénie avec Ac anti-RACH :
- Il s’agit le plus souvent de femmes jeunes (environ 90% des cas publiés) [42].
- La maladie débute pendant la quatrième décade.
- Caractère généralisé de la myasthénie
- Le tableau clinique est globalement sévère : atteinte des muscles faciaux, bulbares et respiratoires, mais rarement des signes oculaires avec des poussées myasténiques plus fréquentes.
- Atteinte des extenseurs du cou avec dropped head syndrome ou « tête tombante » semble plus fréquente
- La fréquente négativité de l’exploration électroneuromyographique (absence de décrément).
- Le recours aux immunosuppresseurs est souvent nécessaire.
- Atrophie musculaire est fréquente [42]. en particulier une atrophie linguale et massétérine.
- Contrairement aux patients avec des anticorps anti-RACH, il existe une bonne corrélation entre le taux des anticorps anti-MuSK et la sévérité clinique pour cette catégorie de patients [43].
- Une mauvaise réponse aux traitements anticholinestérasiques
- Une meilleure efficacité des EP par rapport aux IgIV dans le traitement des poussées [44].
- Le taux de rémission complète est plus faible dans la M-MuSK que dans la M-RACH.
- Absence en général de pathologie thymique associée [45] ; involution thymique, absence de thymome. L’intérêt de la thymectomie reste à évaluer dans la M-MuSK.

L’association des anticorps anti-RACH et anti-MuSK est un phénomène rare (myasthénie auto-immune double séropositive). Le changement du caractère évolutif
de MG ainsi que l’apparition de signes spécifiques de la forme de MG avec AC anti-MuSK positifs devraient faire évoquer l’apparition de ces anticorps en association aux Ac anti- RACh [46].

Myasthénie séro-négative :

Pour les myasthénies généralisées sans anticorps anti- RACh ni anti- MuSK, dites séronégatives, deux catégories d’anticorps ont été récemment décrits grâce à des techniques d’immuno- marquage sur cellules HEK (Human embryonic kidney).

- Anticorps anti- LRP4

 Le ligand pour la protéine MuSK est une lipoprotéine baptisée LRP4 (=low-density lipoprotein (LDL) receptor-related protein- 4) qui est une protéine transmembranaire dans le muscle capable d’activer la molécule MuSK. L’association avec la protéine MuSK est favorisée par l’Agrine [47].

 Un certain nombre de patients chez qui on ne retrouve ni auto-anticorps anti-RACH, ni auto-anticorps anti- Musk (ou double séro- négatives), présentent des auto-anticorps contre la protéine LRP4 ; mais leur proportion varie selon les études.

 Le dosage d’auto-anticorps anti-LRP4 dans le sérum de 800 personnes atteintes de myasthénie provenant de 10 pays différents, a montré que la fréquence de personnes doubles séro-négatives exprimant des auto-anticorps anti- LRP4 est de 18,7%[48].

 La myasthénie liée à des autoanticorps anti- LRP4 se révèle moins sévère que la myasthénie liée à des auto-anticorps anti- MuSK [48].

 Compte tenu de leur découverte récente, le mécanisme d’action des anticorps anti- LRP4 n’est pas encore complètement connu. Cependant on sait que ces anticorps sont essentiellement des IgG1 capable de lier le complément. Ils interfèrent dans la liaison de l’agrine à son récepteur et modifient l’agrégation des RACh sur des cellules musculaires [49].
Le dosage de ces anticorps n’est pas encore disponible en routine, mais une équipe française est activement impliquée dans la réalisation de ce test.

- **Anticorps anti- RACH à faible affinité**

 La myasthénie généralisée (MG) est liée à la présence d’anticorps anti- récepteur de l’acétylcholine (RACH) ou anti- MuSK chez respectivement 80 % et 5 à 10 % des patients.

 Dix à 20 % des patients restent séronégatifs.

 Parmi ces patients, certains semblent avoir des anticorps anti- RACH qui ne sont pas détectés par le test classique disponible, car ils ne reconnaissent que le RACH dans une configuration native cellulaire. Ceci a été démontré grâce aux cellules HEK génétiquement modifiées exprimant les différentes sous-unités du RACH musculaire ainsi que la rapsyne, une protéine intracytoplasmique importante pour la stabilisation du RACH. Ces anticorps appartiennent majoritairement à la sous-classe IgG1 et sont capables d’activer le complément [50].

 Si leur phénotype se rapproche de celui des anti- RACH détectés par la technique standard de radio-immunoprécipitation, la sévérité semble moindre et les formes à prédominance oculaire sont fréquentes.

 Les myasthénies associées aux anticorps anti- RACH à faible affinité et anti- LRP4 sont proches de celles de la myasthénie classique à anticorps anti- RACH : prépondérance féminine, implication dans des formes généralisées (habituellement légères si anticorps anti- LRP4) et oculaires, thymus involutif ou hyperplasique.

- **Anti- Rapsyn**

 Ils correspondent à une protéine cytoplasmique de 43 kDa, située du côté cytoplasmique de la jonction neuromusculaire, qui fixe la sous-unité, B du récepteur de l’acétylcholine. Ces AC sont décelés par immunoempreintes au cours de 15 % des myasthénies séronégatives mais aussi dans 80 % des LED.
o auto- anticorps dirigés contre la cortactine

La cortactine est une protéine qui se lie à l’actine et qui lui permet de s’assembler pour former des filaments. Elle est localisée au niveau de la jonction neuromusculaire et est impliquée dans le regroupement des récepteurs à l’acétylcholine.

Dans une étude publiée en septembre 2014, une collaboration espagnole, néerlandaise et américaine a identifié des auto-anticorps anti-cortactine dans la myasthénie auto-immune. L’analyse du sérum de 91 personnes atteintes de myasthénie séronégative (chez qui on ne retrouve pas d’auto-anticorps anti-RACH, anti-Musk ou anti-LRP4) a montré que 19,7% de ces personnes présentaient des auto-anticorps anti-cortactine. Cette proportion n’est que de 4,8 % chez les 103 personnes séropositives aux auto-anticorps anti-RACH, anti-Musk ou anti-LRP4 chez qui le dosage a été fait en parallèle. Cependant, ces anticorps ne sont pas très spécifiques de la myasthénie. [51 52]

Le pourcentage de personnes atteintes de myasthénie qui n’ont ni autoanticorps anti-RACH, ni auto-anticorps anti-MuSK, ni auto-anticorps antiLRP4 est de l’ordre de 2 à 5%. Des anticorps contre d’autres molécules de la plaque motrice ont été recherchés. Il a été montré que certains patients peuvent avoir des anticorps contre le collagène Q ou contre l’agrine [53]

o AC anti agrine :

Un nouveau composant de la jonction neuromusculaire, l’agrine, serait la cible d’anticorps et à l’origine d’une forme de myasthénie auto-immune. L’agrine est une protéine qui se fixe sur son récepteur LRP4 et contribue ainsi au maintien de la jonction neuromusculaire et au regroupement des récepteurs de l’acétylcholine (RACH) au niveau de la membrane postsynaptique.
Cette observation a été rapportée par une équipe sino-américaine dans une publication de mars 2014, en se basant sur l’analyse des anticorps dirigés contre l’agrine dans le sérum de 93 patients atteints de myasthénie dont 4 étaient "triple négatifs", c'est-à-dire qu’ils ne présentaient pas d’anticorps anti-RACH, anti-MusK et anti-LRP4.

Parmi les 93 séums étudiés, 7 sérums (soit 7,5%) répondaient positivement aux anticorps anti-agrine. Cinq d’entre eux exprimaient aussi des anticorps anti-RACH et 2 étaient « triples négatifs », témoignant de la possibilité de ne retrouver que des anticorps anti-agrine chez certains patients [54].

Des expériences complémentaires sur des cellules en culture ont montré que les anticorps anti-agrine empêchent le regroupement des récepteurs de l’acétylcholine au niveau de la membrane.

Ces résultats suggèrent que l’agrine pourrait être un nouvel antigène responsable d’une forme de myasthénie « triple négative » [54].

Myasthénie triple séronégative

On estime à environ 5% des personnes atteintes de myasthénie auto-immune, la proportion de personnes atteintes de myasthénie triple séronégative, c’est-à-dire chez qui on ne retrouve ni auto-anticorps anti-RACH, ni auto-anticorps anti-MuSK, ni auto-anticorps anti-LRP4.

Une équipe européenne rassemblant 13 pays a cherché à améliorer la sensibilité des méthodes de détection des auto-anticorps dans la myasthénie.

- Dans une première étude, l’analyse du sérum de 633 personnes atteintes de myasthénie triple séronégative par une technique appelée « cell based assay », basée sur l’étude des cellules, a mis en évidence la présence d’auto-anticorps anti-MuSK chez 13% de ces personnes atteintes de myasthénie triple séronégative [55].
Dans une seconde étude, la même équipe a analysé le sérum de 667 personnes atteintes de myasthénie (dont 372 étaient séronégatives) par une méthode existante pour détecter des anticorps anti-titine, dont elle a amélioré la sensibilité. Les chercheurs ont ainsi détecté des auto-anticorps anti-titine non seulement chez 40,9% des personnes atteintes de myasthénie liée à RACH, chez 14,6% des personnes atteintes de myasthénie anti-MuSK (14,6%) et chez 16,4% des personnes atteintes de myasthénie anti-LRP4, mais aussi chez 13,4% des personnes atteintes de myasthénie triple séronégative. [56]

Les auto-anticorps anti-titine

Ils correspondent à la connectine ou titine, protéine élastique du myosquelette de 30 kD. Ils apparaissent en immunofluorescence indirecte, sur coupe de muscles dans 97% des syndromes myasthéniques avec tumeur épithéliale thymique et des myasthénies tardives, ils sont aussi en faveur de l’apparition d’un syndrome paranéoplasique.

Une équipe norvégo-polonaise a identifié dans un groupe de 295 personnes atteintes de myasthénie, 81 personnes (soit 27%) présentant des auto-anticorps anti-titine. Parmi ces personnes, 54% avaient un thymome, 0,6% une myasthénie à début précoce avec thymome et 55% une myasthénie à début tardif sans thymome. Ces résultats publiés en juin 2014 suggèrent que la recherche d’auto-anticorps anti-titine pourrait aider à la détection d’un thymome chez les patients atteints d’une myasthénie à début précoce et servir de marqueur de la myasthénie à début tardif [57].

Autoanticorps anti-récepteurs de la ryanodine (anti-RyR)

Ce sont Mygland et collaborateurs en 1994 qui ont décrit ces autoanticorps anti-ryanodine (RyR) dans la myasthénie (Mygland, Tysnes et al. 1994).

Les autoanticorps anti-RyR présents dans la myasthénie avec thymome ont dans plus de 50% des cas une activité d’inhibition de la liaison de la ryanodine avec les
RyR. Ces autoanticorps ferment le canal et sont surtout des IgG1. La région immunogène majeure se trouve du côté N-terminal (résidues 799-1172). Les myasthénies avec anti-RyR bloquants sont plus sévères que les autres (Skeie, Lunde et al. 1998).

Ces autoanticorps ne sont pas recherchés en pratique courante. Ils ont été détectés par ELISA, immunotransfert et inhibition de la capture de RyR marquée.

Ils sont décelés dans les myasthénies graves et correspondent à ce récepteur localisé sur le reticulum sarcoplasmique des muscles striés, lié aux canaux Ca+ qui jouent un rôle dans la contraction.

ŷ AC anti muscle strié

Le rôle exact des AC antimuscles striés fixant de nombreuses cibles antigéniques membranaires musculaire (bande A et I du sarcomère, myosine, actine, αactinine, titine, filamine, vinculine, tropomyosine et récepteur à la ryanodine du réticulum sarcoplasmique) reste inconnu.
Représentation schématique de quelques constituants de la membrane postsynaptique.

Figure 7
3.2. **Rôle du thymus**

L’architecture du thymus est perturbée chez les patients atteints de myasthénie : les cellules épithéliales médullaires sont hypertrophiées et infiltrées par des zones contenant des lymphocytes T matures, dont la structure évoque les zones T des ganglions lymphatiques, et par des centres germinatifs contenant des lymphocytes B [58].

Des lymphocytes T auto réactifs ainsi que des lymphocytes B sécrétant des autoanticorps sont présents dans le thymus [59].

Leur génération pourrait être due à l’expression du récepteur de l’acétylcholine par des cellules dans ces structures « aberrantes » mais aussi par des cellules myoïdes, qui sont des cellules stromales présentant une différenciation musculaire [58].

Des anomalies de sélection pourraient être impliquées dans la pathogenèse de la myasthénie, car des troubles de l’apoptose thymique sont décrits chez les patients et sont corrélés à la progression clinique de la maladie [60].

Les anomalies thymiques qui peuvent être associées à la myasthénie sont l’hyperplasie folliculaire thymique dans 65 % des cas, ou le thymome (tumeur épithéliale) dans 10-15% des cas.

Bien que le récepteur de l’acétylcholine soit exprimé dans le thymus hyperplasique et au sein du thymome [61], la thymectomie induit souvent une rémission de la maladie dans le cas de l’hyperplasie folliculaire thymique, mais pas dans le cas du thymome [62].

Dans le cas de l’hyperplasie folliculaire thymique, des lymphocytes T autoréactifs sont présents dans le thymus, ainsi que des lymphocytes B sécrêteurs d’autoanticorps regroupés dans les follicules.

Cela n’est pas le cas pour le thymome qui ne semble pas contenir de lymphocytes B sécrêteurs d’autoanticorps : le titre d’autoanticorps ne diminue pas
après thymectomie, ce qui expliquerait l’absence de bénéfice systématique de la thymectomie [62].

La pathogenèse est donc différente de celle de l’hyperplasie folliculaire et requiert une activation des lymphocytes B en périphérie : le thymome conserve ses propriétés fonctionnelles en ce qui concerne la maturation des lymphocytes T et le passage de lymphocytes T autoréactifs intratumoraux en périphérie est une étape nécessaire permettant leur interaction avec les lymphocytes B autoréactifs.

Une fois que la réaction auto-immune est initiée en périphérie, elle s’autoentretient [62].

Cependant, pour certains auteurs, au moins au début de la maladie, les cellules produisant les anticorps anti-récepteur de l’acétylcholine sont localisées dans le thymome [63].

3.3. **Facteur génétique** :

La myasthénie est une affection génétiquement déterminée

ⅰ L’antigène HLA

La myasthénie est associée aux antigènes d’histocompatibilité

La myasthénie avec hyperplasie folliculaire du thymus (TFH), la plus fréquente, a été associée dès 1974 à l’haplotype ancestral HLA- A1- B8- DR3, ou haplotype 8.1, et, plus récemment, liée à la région HLA, définissant le locus MYAS1 [64]

Dans la population caucasienne HLA-DR3 et B8 sont ainsi associés aux myasthénies dites précoces (avant 40 ans) avec hyperplasie thymique, touchant le plus souvent des femmes. Les myasthénies tardives sont associées aux phénotypes HLA-DR2 et -B7. HLA-DR7 serait associé aux myasthénies tardives sans anomalies thymiques avec anticorps anti-titine. Le phénotype DR3 serait également rencontré dans ce type de myasthénie mais plus précocement. Une association DR14- DQ5 a été
décrite chez des patients avec anticorps anti-MuSK. D’autres polymorphismes d’association de gènes différents du complexe HLA comme des facteurs transcriptionnels régulateurs de l’expression thymique d’autoantigènes ont été décrits. [65]

Celui-ci n’explique cependant que partiellement l’impact du CMH sur le risque de développer la maladie.

Dans le travail effectué par l’équipe Inserm de Henri-Jean Garchon, la transmission du complexe HLA, des parents à leur enfant myasthénique, a été analysée sur plus de 70 familles à l’aide de nombreux marqueurs balisant l’ensemble de la région. Cette méthode a permis de préciser la position des gènes impliqués, dans la région dite de classe III. Les résultats obtenus démontrent pour la première fois que d’autres gènes du complexe HLA, distincts des gènes de classe I et II, interviennent dans la susceptibilité à la myasthénie. De plus, certains influencent la production des auto-anticorps et surtout, ils peuvent interagir, ou au contraire exercer des effets antagonistes. Les gènes responsables et les protéines qu’ils codent restent à identifier [66]

\[Le \text{ gène AIRE :} \]

La grande sensibilité des femmes aux maladies auto-immunes serait liée à l’expression de AIRE, un facteur de transcription qui joue un rôle majeur dans les mécanismes de tolérance centrale au niveau du thymus. L’expression de ce facteur est diminuée par les estrogènes chez les femmes au moment de la puberté par un mécanisme épigénétique (Dragin et al.soumis). En outre, il a été montré que les souris mutées pour le gène AIRE sont particulièrement susceptibles à la myasthénie [67]

La plus grande fréquence de femmes atteintes de myasthénie que d’hommes dans la forme jeune de la maladie, suggère l’hypothèse de l’implication des hormones sexuelles dans le déclenchement de la maladie. Il existe chez les femmes, dès la
puberté, une diminution de l’expression du facteur de transcription AIRE (pour Auto-immune regulator), qui n’est pas retrouvée chez les hommes. AIRE est un facteur clé pour la tolérance immune.

Très récemment, une équipe de l’Institut de Myologie [68] a montré que, comme chez la souris, le facteur AIRE est moins exprimé dans le thymus de femmes que celui d’hommes. Ce sont les œstrogènes qui sont responsables de la baisse de l’expression du facteur AIRE dans les cellules thymiques des femmes et augmentent ainsi la sensibilité des femmes aux maladies auto-immunes. Les niveaux d’expression de AIRE peuvent donc indiquer une prédisposition à une maladie auto-immune [68].

Identification de miARN dans la myasthénie liée à des auto-anticorps anti-RACCh

Deux équipes, l’une espagnole et l’autre européenne, ont analysé les miARN circulant dans le sérum de personnes atteintes de myasthénie afin de trouver d’éventuels marqueurs biologiques de la maladie.

- La première équipe a évalué le profil en miARN dans le sérum de personnes atteintes de myasthénie liée à des auto-anticorps anti-RACCh, avec myasthénie à début précoce, à début tardif ou avec thymome. Elle a identifié 7 miARN faiblement exprimés : les miARN-15b, miARN-122, miARN-140-3p, miARN-185, miARN-192, miARN-20b et miARN-885-5p. Ces faibles niveaux d’expression ne sont pas modifiés par le stade de la myasthénie, ni par un traitement (corticoïdes, thymectomie) [69].

- La deuxième équipe a mis en évidence 3 miARN spécifiquement dérégulés dans la myasthénie liée à des auto-anticorps anti-RACCh : les miARN-150-5p, miARN-21-5p et miARN-27a-3p. Plus particulièrement, les niveaux de miARN-150-5p sont significativement réduits après une thymectomie, suggérant une corrélation avec l’amélioration de la maladie. Les miARN identifiés pourront servir de marqueurs biologiques pour suivre l’évolution de la myasthénie liée à des auto-anticorps anti-RACCh ou l’efficacité de traitements. Les techniques d’identification des miARN sont
en voie de développement et devront être standardisées pour obtenir des résultats plus homogènes entre les différentes équipes. [70]

Mise en évidence de facteurs de risque dans la myasthénie

Dans un article publié en février 2015, une collaboration internationale a réalisé une étude de grande ampleur pour identifier des caractéristiques génétiques dans le but de suivre l’évolution de la myasthénie. A partir de 1032 échantillons d’ADN de personnes atteintes de myasthénie liée à des auto-anticorps anti-RACH et 1998 contrôles, elle a identifié 3 molécules associées à un risque de myasthénie : CTLA4, HLA-DQA1 et TNFRSF11A [71]

Les auteurs suggèrent que l’utilisation d’immunomodulateurs liés à CTLA4 (qui sont déjà utilisés dans le traitement d’autres maladies auto-immunes) pourrait être une piste thérapeutique dans le traitement de la myasthénie [71].

3.4. Facteur viral

Dans le cadre du projet européen FIGHT-MG, l’équipe de chercheurs est parvenue à décrypter le déclenchement de la maladie en utilisant une molécule mimant l’ARN double brin viral (le Poly (I :C)).

Pour cela, ils se sont penchés sur l’organe jouant un rôle central dans cette pathologie : le thymus.

Ils ont ainsi mis en évidence in vitro que le Poly (I :C) était capable d’induire spécifiquement une surexpression de RACH par les cellules épithéliales thymiques, tout en activant trois protéines (le récepteur « toll-like » 3 (TLR3), la protéine kinase R (PKR) et l’interféron-beta (IFN-â)) ; cette dernière entrainant une inflammation au niveau du thymus.

En parallèle, ils ont analysé les thymus pathologiques des malades atteints de myasthénie, chez lesquels ils ont observé une surexpression de ces 3 mêmes
protéines du système immunitaire, surexpression caractéristique d’une infection virale.

Enfin, les chercheurs sont parvenus également à identifier les mêmes changements moléculaires dans le thymus de souris, suite à l’injection de Poly(I :C). Après une période d’injection prolongée, ils ont aussi observé chez ces souris la prolifération de cellules B anti-RACH, la présence d’auto-anticorps bloquant les récepteurs RACH et des signes cliniques synonymes de faiblesse musculaire comme dans la myasthénie.

Ces résultats originaux montrent que des molécules mimant une infection virale sont capables d’induire une myasthénie chez la souris, ce qui jusqu’à présent n’avait jamais été démontré [72].

L’ensemble des travaux publiés dans la revue Annals of Neurology [72] apporte une preuve de concept qu’une infection virale pourrait entrainer une inflammation du thymus et conduire au développement d’une myasthénie auto-immune.

Les prochaines étapes de recherche consisteront à déterminer de quel virus exogène il pourrait s’agir ou s’il s’agit d’une activation anormale d’une réponse anti-virale par des molécules endogènes.

Virus Epstein- Barr (EBV)

Une équipe franco-italienne a observé l’expression de protéines du virus Epstein-Barr (EBV) dans le thymus de personnes atteintes de myasthénie auto-immune contrairement au thymus de personnes sans myasthénie [73].

Dans un article publié en septembre 2011, cette même équipe a étudié les liens entre l’inflammation intrathymique chronique et l’infection EBV chez des patients atteints de myasthénie auto-immune. Elle a mis en évidence dans le thymus de ces patients, à la fois une surexpression de gènes impliqués dans la réponse inflammatoires et immunitaires, et une infection intrathymique active par l’EBV. Ces
résultats renforcent l’hypothèse que l’infection par EBV pourrait activer ou renforcer la réponse auto-immune dans le thymus dans la myasthénie auto-immune [73].

L’équipe à l’origine de cette observation a récemment montré une augmentation significative de la quantité d’ARN messagers de TLR7 et TLR9 dans des thymus atteints de myasthénie et infectés par l’EBV. Cela suggère que la voie de signalisation de TLR7/TLR9 pourrait être activée dans les thymus myasthéniques et infectés par l’EBV et contribuent aussi à la perturbation de la tolérance par les lymphocytes B, l’inflammation à long terme et au maintien de la réponse auto-immune dans les thymus de patients [74].

ý virus du Nil occidental

En analysant le sérum de 29 personnes atteintes de myasthénie liée à RACH, une équipe italienne a mis en évidence la présence d’anticorps dirigés contre le virus de Nil occidental chez 17% d’entre elles. Aucune manifestation liée à l’infection virale n’a cependant été rapportée. Ces résultats viennent confirmer d’autres travaux suggérant que l’infection par le virus pourrait être un facteur de risque supplémentaire pour déclencher une myasthénie [75].

ý polyomavirus

Depuis plusieurs années, l’hypothèse d’une infection virale qui déclencherait le dysfonctionnement du thymus est à l’étude. Le rôle du virus d’Epstein- Barr (EBV) reste discuté.

Récemment, l’équipe de S. Berrih- Aknin et R. Le Panse a confirmé la piste d’une origine virale dans la myasthénie auto-immune à l’aide d’une part d’une molécule mimant l’ARN viral qui provoque des signes cliniques et d’autre part en observant une augmentation de l’expression de l’interféron de type I (molécule sécrétée en cas d’infection virale). On sait par ailleurs que l’infection par le polyomavirus est impliquée dans le développement des thymomes. L’analyse de 37 thymomes humains
dont 26 provenant de personnes atteintes de myasthénie a révélé la présence de polyomavirus 7 humain dans 23 thymomes, soit 62,3 % des cas. Cela concernait 18 des 26 thymomes myasthéniques. Cette étude suggère une association entre le polyomavirus 7 et la myasthénie qui reste toutefois à confirmer. [76]
La surexpression de récepteurs de l’acétylcholine (RACh) après introduction de l’ARN double brin (Poly(I :C) dans la cellule épithéliale thymique

© Inserm / R. Le Panse

Figure 8
3.5. **Facteur environnemental**

En plus de la susceptibilité génétique, la myasthénie est très dépendante des facteurs environnementaux. Celle-ci peut survenir sans aucun élément déclencheurs, mais peut aussi être provoquée par un phénomène infectieux, une intervention chirurgicale, un traumatisme, un surmenage musculaire, une grossesse ou encore certains médicaments.

Étude FIGHT-MG sur des vrais jumeaux dont l’un est atteint de myasthénie auto-immune :

MATERIELS ET METHODES
Il s’agit d’une étude prospective monocentrique avec un résultat de 31.27+/-16.96 mois ; incluant tous les patients qui se sont présentés au service de chirurgie thoracique de l’Hôpital Ibn Sina de Rabat entre Juin 2010 et Mai 2015 inclus, pour prise en charge chirurgicale de leur myasthénie.

Type d’étude

Nous avons réalisé une étude analytique prospective sur une durée de 5 ans.

Population étudiée, critères d’inclusion et critères d’exclusion

Ont été inclus dans cette étude tous les patients myasthéniques ayant bénéficié d’une thymectomie avec ou sans tumeur thymique, au sein de l’hôpital Ibn Sina de Rabat durant la période Juin 2010 et Mai 2015.

Il n’y a eu aucun refus de chirurgie.

Pas de critères d’exclusion.

Méthodologie de l’étude et analyse statistique des données :

Dans tous les cas, le diagnostic de myasthénie était posé par un médecin neurologue sur un ensemble d’arguments cliniques, biologiques et électrophysiologiques. Tous les patients avaient bénéficié d’une tomodensitométrie thoracique. Les patients étaient traités par des anticholinestérasiques et en cas de besoin un traitement à base de corticoïdes et/ou d’immunosuppresseurs était instauré par le neurologue.

Le recueil des données a été réalisé au service de chirurgie thoracique dès l’admission du patient. Pour nos patients, nous avons relevé les paramètres suivants :

- les paramètres épidémiologiques : L’âge, Le sexe
- Les antécédents pathologiques, les comorbidités
- Délais séparant la chirurgie et le début des symptômes cliniques
- Gravité clinique évaluée par la classification MGFA (annexe 5)
Moyens de diagnostic : Electromyogramme (EMG), anticorps anti-récepteur de l’acétylcholine.

- Le traitement pré- et postopératoire,
- L’évolution sous traitements médicamenteux
- La présence d’anomalie thymique explorée par l’imagerie : la tomodensitométrie thoracique.

- Type d’intervention chirurgicale
- Type histologique de l’anomalie thymique
- Evolution post chirurgicale à court terme et moyen terme
- La fréquence des poussées pré- et postopératoires,
- les séjours en réanimation ...

Le recueil des différentes données s’est effectué sur une fiche d’exploitation préétablie (voir Annexe 1), qui prenait en compte : les caractéristiques anatomopathologiques des lésions thymiques, la fréquence des poussées postopératoires, le degré d’amélioration postopératoire...

Rythme du suivi : Un premier contrôle à un mois puis tous les 3 mois

La réponse thérapeutique à la thymectomie avait été évaluée par la Classification Myasthenia Gravis Foundation of America (MGFA) postopératoire (MGFA statut post interventionnel) (voir Annexe 7)

Nous avons attribué aux stades de MGFA un code comme suit :

- 2 : décès
- 1 : aggravation
- 0 : stable
- 1 : amélioration

2 : Manifestations Minime
3 : Rémission pharmacologique (RP)
4 : Rémission complète et stable (RCS)
On a comparé deux groupes de patients : groupe myasthéniques avec thymome (quel que soit le type histologique du thymome) et groupe myasthénique sans thymome : patients avec hyperplasie thymique ou thymus normal ou vestige thymique.

Les facteurs pronostiques étudiés ont été les suivants :
- Age (<45 ou ≥45 ans)
- Sexe
- Forme clinique de la myasthénie
- MGFA préopératoire
- Durée d’évolution de la myasthénie avant la thymectomie
- Type histologique du thymus
- Traitement médical reçu

Le test de Student est utilisé dans notre étude afin de comparer les variables quantitatives, et le test Chi² pour les variables qualitatives.

L'évolution à court terme était évaluée par la méthode GLM à mesures répétées.

L'évolution à moyen terme était faite par des courbes de survie par la méthode de Kaplein- Meir. La survenue d'une rémission stable ou pharmacologique ou MM était l'événement considérée.

Les courbes de survie sont comparées par le test de LogRank.

Le seuil de significativité p est fixé à 0.05 dans l’ensemble de l’étude.
RESULTATS
I. Aspects épidémiologiques :

1. L’âge :

La série de patients étudiée concerne 41 patients, tout âge confondu, opérés et suivis au service de chirurgie thoracique. L’âge des patients s’échelonne de 15 à 72 ans, avec un âge moyen au moment de l’intervention de 22.41 ± 14.47 ans.

On observe que toutes les tranches d’âge sont représentées :

- 1 cas de forme juvénile débutant avant l’âge de 15 ans (soit 2.43%).
- 58.4 % des cas étaient des myasthénies de l’adulte jeune (inférieur à 40 ans).
- 38.9 % des cas étaient des myasthénies à début tardif.

Concernant la répartition de nos patients selon la tranche d’âge, on note 2 tranches d’âge de prédilection : entre 21 à 30 ans et 41 à 50 ans ; soit respectivement 36.5 % et 21.9%
2. Le sexe :

Dans notre série de 41 patients, nous comptons 23 femmes soit 56 % des cas et 18 hommes soit 43.9 % des cas.

Avec un Sex ratio de 0.78.

Avant 40 ans, la prédominance féminine est importante, F/H=2.1

Globalement, il y a autant de femmes que d’hommes parmi les patients de la série, soit 56% de femmes et 44 % d’hommes.

Comme l’ensemble des maladies auto-immunes prédominant chez la femme, notre série montre une légère prépondérance féminine.
3. Interaction âge- sexe :

Graphique 3

Pour les femmes, le pic maximum est compris entre 21 et 30 ans. 2ème pic : entre 40-50 ans

Quant aux hommes, ils sont majoritaires après l'âge de 40 ans.

Tableau 1 : L’âge moyen des patients en fonction de leurs sexes

<table>
<thead>
<tr>
<th>Sexe</th>
<th>Effectif</th>
<th>Moyenne d’âge</th>
<th>Ecart-type</th>
<th>Erreur standard de la moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homme</td>
<td>18</td>
<td>41.39</td>
<td>14.516</td>
<td>3.422</td>
</tr>
<tr>
<td>Femme</td>
<td>23</td>
<td>32.57</td>
<td>13.497</td>
<td>2.814</td>
</tr>
</tbody>
</table>

La médiane d’âge des patients de sexe masculin est de 41.39+/- 14.516 ans.

La moyenne d’âge de sexe masculin est plus élevée.
Dans notre série d’étude, les adultes de moins de 40 ans représentent 60.9% des cas, et sont en majorité des femmes. À partir de 50 ans les hommes deviennent majoritaires

II. Etude clinique :

1. Présentation clinique

Tableau 2 : Fréquence de la myasthénie généralisée et la myasthénie oculaire

<table>
<thead>
<tr>
<th>Forme clinique</th>
<th>Myasthénie généralisée</th>
<th>Myasthénie oculaire</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
<td>27</td>
<td>14</td>
<td>41</td>
</tr>
<tr>
<td>%</td>
<td>65.85</td>
<td>34.14</td>
<td>100</td>
</tr>
</tbody>
</table>

Sur les 41 patients, 14 (34,1%) ont une forme oculaire pure contre 27 malades (65,9%) qui avaient une forme généralisée.

Parmi les patients ayant une myasthénie générale, 22 présentaient une atteinte bulbaire soit 81.4%
2. Stade clinique selon la classification MGFA

Au moment de la thymectomie, les malades se répartissaient de la manière suivante :

- Stade I : 14 soit 34.1%
- Stade IIa: 5 soit 12.2%
- Stade IIb: 10 soit 24.4%
- Stade IIIa : 3 soit 7.3%
- Stade IIIb : 8 soit 19.5%
- Stade Iva : 0 soit 0%
- Stade IVb : 1 soit 2.4%
- Stade V : 0%

Un tiers des patients appartiennent au stade I ; Ces patients souffrent de faiblesse musculaire intéressant surtout et exclusivement les muscles oculaires.
III. **Etude paraclinique :**

1. **Electromyogramme :**

 Tous les patients de notre série ont bénéficié d’un EMG.

<table>
<thead>
<tr>
<th>Nombre de patient</th>
<th>Normal</th>
<th>anormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>35</td>
<td>41</td>
</tr>
</tbody>
</table>

 Parmi les 41 EMG réalisés, 35 (85.3%) ont révélé un bloc neuromusculaire post-synaptique et 6 EMG sont revenus normaux.

2. **Dosage des anticorps anti-RACCh et AC anti-MUSk**

 ![Graphique 5](image)

Graphique 5
La recherche des anticorps anti-récepteur à l’acétylcholine a été réalisée chez tous nos patients. Ils étaient positifs chez 35 patients (soit 85.36%) avec des taux qui varient de 2.61 à 186.50 ng/ml.

La recherche des AC anti MUSk ne se fait pas systématiquement chez tous les patients. Elle est indiqué chez les myasthénique séronégatifs aux auto-anticorps anti-RACh.

Sur les 6 patients (14.63%) séronégatifs aux auto-anticorps anti-RACh, 4 ont bénéficié d’une recherche des AC anti-MUSk ; les résultats étaient tous positifs.

Les deux autres patients n’ont pas réalisé le dosage des AC anti-MUSk par défaut de moyens pécuniaires.

Au moins 66.7% des patients séronégatifs aux AC anti-RACh ont des des AC anti-MUSk.

3. **TDM thoracique** :

Elle a été réalisée de façon systématique chez tous nos patients dans le cadre du bilan préopératoire.
IV. Traitement

1. Traitements médicaux

Tous les patients comptaient dans leur traitement un anticholinestérasique ; parmi eux 27 (65%) patients avaient besoin d’un traitement à base de corticoïdes et/ou des immunosuppresseurs.

Trois patients (7.3%) ont reçus, à un moment donné de l’évolution de leur maladie, des immunoglobulines intraveineuses à l’occasion de crise myasthénique.

Aucun patient n’a bénéficié d’échange plasmatique par manque de centre de plasmaphérèse.
2. Thymectomie

2.1. Délai préopératoire

Il représente le temps écoulé entre le début des premières manifestations cliniques et l’hospitalisation pour thymectomie. Elle a été précisée lors de l’interrogatoire avec le malade.

La durée d’évolution de la myasthénie avant la thymectomie variait de 2 à 108 mois avec une moyenne de 22,41 mois.

La thymectomie a été réalisée de façon précoce, dans un délai inférieur à 12 mois après le diagnostic de la myasthénie, dans 17 cas.

Et de façon retardée, une à deux ans après le diagnostic, dans 24 cas.

Graphique 7

41% des patients présentaient leurs premiers symptômes depuis moins d’un an. 39% entre un an et deux ans. Et 19,4% depuis plus de deux ans.
2.2. **Voies d’abord**

L’ensemble des malades a été opéré par la même équipe chirurgicale.

Tous les patients ont été opérés par sternotomie totale ou partielle (manubriotomie).

2.3. **Suites post-opératoires :**

Tous les patients ont séjournés au service des soins intensifs en postopératoire au moins 24h

Les suites post opératoires immédiates ont été simples sauf pour un patient ayant présenté une crise myasthénique post opératoire et qui avait nécessité une assistance respiratoire.

En ce qui concerne la mortalité opératoire, une patiente est décédée à j 10 post opératoire suite à une embolie pulmonaire.
2.4. **Type histologique de la lésion thymique**

Tous les cas de notre série avaient une confirmation histo-pathologique.

90% de nos patients myasthéniques présentent une anomalie thymique : Dans 46% des cas il s’agit d’une hyperplasie thymique et dans 48% des cas d’un thymome.

Dans notre série, l’association myasthénie-thymome est :

- Notée chez 18 patients (43.9 %) dont 8 hommes et 10 femmes.
- Retrouvé dans 16 formes généralisées
- La moyenne d’âge chez les patients myasthéniques avec thymome est de 45.39 contre 29.43 chez sans thymomes (p < 0.001)
Lors du diagnostic de la maladie, aucun patient ne présentait de métastases.
4 parmi ces 18 thymomes étaient invasifs.
Parmi nos patients ayant un thymome, seulement 5 malades ont bénéficié d’une RTH adjuvante.
La TDM thoracique s’est révélée normale dans 11 cas (26.8%) et anormale chez 30 patients soit 73.1% des cas dont 9 cas d’hypertrophie de la glande thymique et 21 cas de tumeur thymique.

Tableau 4 : Résultats de la TDM thoracique

<table>
<thead>
<tr>
<th>TDM thoracique</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect normal</td>
<td>11</td>
<td></td>
<td>9</td>
<td>21</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Hypertrophie thymique</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumeur</td>
<td></td>
<td></td>
<td>21</td>
<td>51.21%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

V. Protocole de suivi

Le recul : Après la thymectomie, le recul est de 3 mois à 60 mois (un recul moyen de 31.27 +/- 16.96 mois)

- L’imagerie de contrôle

Tous nos patients ont bénéficié d’une radiographie thoracique tous les 3 mois, et une TDM thoracique annuelle; celle-ci a révélé des métastases pulmonaires 18 mois après la chirurgie et la radiothérapie, chez un seul patient.
VI. Evolution :

1. Analyse de la moyenne marginale estimée du statut MGFA 24 mois post-opératoire par la méthode d'ANOVA ("ANalysis Of VAriance")

\[p < 0.05 \]

Graphique 9

On constate une évolution positive au cours du temps du statut MGFA.
2. Analyse de la survenue de MM/R globale (Selon la Méthode de Kaplan et Meier)

Graphique 10

Le cumulatif de survenue de MM/R est de 50% à 18 mois et de 80% à 2 ans.
La durée moyenne de survenue de MM/R est de 17,26± 1,45 mois.
3. Analyse des facteurs pronostiques

3.1. L’âge

Graphiquement si nous représentons les moyennes à travers les mois d’évolution en fixant la tranche d’âge, nous obtenons les 2 trajectoires suivantes

La survenue de MM/R en fonction de l’âge.

\[(p=0,658)\]

Graphique 11
L’âge de référence est 45 ans.

La survenu de MM/R pour les patients dont l’âge est inférieur à 45 ans est de 12 mois contre 17 mois pour les patients âgés de > 45 ans, mais la différence n’est pas statistiquement significative.

Taux cumulatif de survenue de MM/R en fonction de l’âge

![Graphique 12](image)

Le délai moyen de survenue de MM/R est de 26 mois +/- 3,4 chez les patients âgés de plus de 45 ans par rapport à 20 mois+/- 1,4 chez jeunes patients de moins de 45 ans.
Mais ces résultats ne sont pas statistiquement significatifs ($p=0,065$)

3.2. Le sexe

Evolution des malades en post opératoire selon le sexe

La survenue de MM/R est obtenue plus rapidement chez les femmes (12 mois) que chez les hommes (18 mois). Mais ces résultats ne sont pas statistiquement significatifs ($p=0,257$)

Donc, pas de différence significative dans la vitesse d’amélioration des deux sexes.
3.3. la forme clinique de la myasthénie

La survenue de MM/R en fonction de la forme clinique de la myasthénie (généralisée ou oculaire)

Graphique 14

La médiane de survenue de MM/R est de 18 mois chez tous nos patients quel que soit la forme clinique de la myasthénie.

La différence entre les deux groupes est donc significative (< 0.02). On peut donc conclure que la forme clinique de la myasthénie influence la survenue de MM/R.
3.4. MGFA

La survenue de MM/R en fonction du MGFA

Graphique 15

P=0.816

En général, l’évolution se fait vers l’amélioration quel que soit le stade clinique MGFA initial, mais le délai d’obtention de MM/R diffère selon la MGFA initiale :

- MGFA I : 24 mois
- MGFA IIa : 8.5 mois
- MGFA IIb : 12 mois
- MGFA IIIa : 12 mois
- MGFA IIIb : 16 mois

L’obtention de MM/R est plus rapide pour le stade MGFA IIa.
3.5. **Traitement médical reçu**

L'évolution des patients en fonction du traitement médical reçu

La survenue de MM/R est similaire chez les patients avec et sans traitement immunosuppresseurs.

La prise de corticoïdes et/ou de traitement immunosuppresseurs n’a pas influencée les résultats de la thymectomie ($P=0,680$)
3.6. **Type histologique**

La survenue de MM/R en fonction du type histologique

![Graphique 17](image)

Graphique 17

P=0,021

Après thymectomie, l’évolution est favorable aussi bien chez les patients avec hyperplasie thymique que chez les patients avec autre histologie.
Représentation graphique de la fonction de survenue de MM/ R en fonction de l'histologie du thymus.

Graphique 18

Le délai moyen de survenue de MM/ R est de 18 mois +/- 1,6 chez les myasthéniques sans thymome contre 25 mois +/- 1,9 chez les myasthéniques avec thymome.

Les résultats sont statiquement significatifs (p=0,009).
3.7. Délai préopératoire

L’évolution en post opératoire en fonction du délai préopératoire

Graphique 79

P=0.01

Quel que soit le délai pré- opératoire, tous les patients évoluent vers l’amélioriation.

Les formes tardives répondent rapidement à la chirurgie par rapport aux formes précoces. La proportion des hyperplasies thymique est plus importante dans le groupe tardif.
Probabilité de survenue de rémission (courbe de survie)

Graphique 20

Le délai moyen de survenue de MM/R est de 17,35\(\pm\) 1,51 mois chez les patients ayant une myasthénie évoluant depuis plus de 24 mois par rapport à 25,65\(\pm\) 1,93 mois chez les myasthéniques dont l’évolution de la maladie est inférieure à 24 mois. (P<0.003)
DISCUSSION
L’intérêt de la thymectomie était un sujet très débattu. Elle était formelle en cas de thymome associé, mais restait discuté dans les autres cas. [77, 78, 79, 80]

Actuellement, il existe un essai clinique qui a tranché le débat [30].

Critique de l’étude :

Points forts : Etude prospective et donc pas de biais de sélection : le recueil des données a été réalisé dès l’admission du patient au service par les médecins du service sur une fiche standardisée (voir Annexe I).

La stadification des patients s’est faite en utilisant la MGFA, contrairement à d’autres études qui utilise le score d’Osserman (voir Annexe III).

Une différenciation entre les patients avec et sans hyperplasie thymique.

Un suivi régulier.

Points faible :

Notre travail est une étude de faible effectif (n=41) avec un recul moyen de 31.27 +/- 16.96 mois et avec des critères d’amélioration et de rémission uniquement clinique. Les biais introduits sont dus à la faible taille de l’échantillon. Or, il est difficile de constituer un échantillon plus important pour une pathologie aussi rare et peu fréquente.

Etude monocentrique : biais de sélection géographiques, climatiques ou ethniques.

Le traitement médical instauré avant la thymectomie chez nos patients n’est pas standardisé.
I. Aspects épidémiologiques

1.1. Age et sexe

Au sein des syndromes myasthéniques, la myasthénie auto-immune est de loin le plus fréquent. La prévalence de l’affection, inconnue au Maroc, est estimée dans la littérature de 50 à 200 par million d’habitants et semble croître dans les dernières décades, en particulier dans les formes tardives [81] et ce pour des raisons encore inconnues (prolongation de la vie, meilleur diagnostic, facteurs environnementaux ?).

De façon générale, L’incidence varie de 1.7 à 21.3 par million d’habitants, en fonction de la localisation de l’étude. [82]

Si la myasthénie débute à tout âge, de 6 mois à plus de 80 ans, elle affecte surtout des adultes de moins de 40 ans (60 % des cas).

Il existe une prépondérance féminine (environ 2/3 des cas pour l’ensemble des patients), mais c’est avant l’âge de 40 ans qu’elle est présente et massive (F/H =3), alors qu’entre 40 et 50 ans, la répartition entre les sexes s’équilibre.

La répartition de la myasthénie est bimodale, avec un premier pic de fréquence concernant les deuxièmes et troisièmes décennies affectant majoritairement les femmes et un deuxième pic durant les sixièmes et septièmes décennies ou l’atteinte masculine serait prépondérante. [83]

Un double pic de fréquence : l’un entre 20 et 40 ans (myasthénie à début précoce), l’autre après 50 ans (myasthénie à début tardive) [84]

Depuis une vingtaine d’année, on décrit une forme tardive, apparaissant après 60 ans, distincte de celle associée aux thymomes et majoritairement masculine. [85]

Il n’y a pas de prédominance raciale ou ethnique.
La myasthénie est rare chez l’enfant dans la population caucasienne (10 à 15% des cas) mais beaucoup plus fréquente en Asie (50 % des cas avant 15 ans, souvent purement oculaire) ; alors qu’elle est a été notée chez 2.43 % de nos patients.

Au Maroc, les données disponibles restent parcellaires et ne reflètent pas une réalité épidémiologique.

L’analyse de la répartition de nos malades par sexe a permis de constater les mêmes notions classiques que la littérature avec une prédominance féminine (54%) et un sex-ratio= 0.78. [85] Concernant la notion d’âge, les patients de notre série, au moment de l’intervention, avait un âge moyen de 22,41 ± 14,47 ans, avec 70 % sont âgés de moins de 40 ans.

La bimodalité constatée dans la répartition des patients dans notre étude diffère de celle de la littérature. On a trouvé 2 pics de prédilection 20-30 et 40-50 ans. Cela trouve son explication dans le fait que la plupart des résultats de la littérature intéressent les pays nordiques qui se caractérisent par un vieillissement de la population. Or au Maroc la population est jeune

1.2. Interaction âge- sexe :

 Entre 30-50 ans le sex-ratio= 1

 Dans notre série d’étude, les adultes de moins de 40 ans représentent 60.9% des cas, et sont en majorité des femmes. A partir de 50 ans les hommes deviennent majoritaires

 On peut décrire un pic entre 20 et 30 ans chez la femme et deux pics entre 20-40 ans et 60-70 ans chez l’homme.
1.3. **Durée d’évolution de la myasthénie**

Le début de la myasthénie est insidieux et la reconnaissance des premiers signes peut être difficile. La fatigue et la faiblesse sont des symptômes communs et peuvent avoir des causes diverses, qu’il n’est pas surprenant que le diagnostic de la myasthénie soit souvent oublié, notamment chez les patients dont la fatigue et la faiblesse sont modérées ou limitées à quelques muscles seulement.

Concernant notre étude, 41% des patients présentaient leurs premiers symptômes depuis moins d’un an. 37% entre un an et deux ans. Et 17% depuis plus de deux ans. Cela trouve son explication dans les hypothèses suivantes :

- Retard diagnostic : plusieurs patients ont consulté un ou plusieurs spécialistes, en dehors du neurologue, avant que le diagnostic ne soit posé.
- Des durées d’évolution supérieures à deux ans sont dues soit à des erreurs diagnostiques et donc retard de prise en charge, soit à la négligence des patients pour les premiers symptômes.

Ceci soulève un autre point important : le rôle particulier du généraliste dans le diagnostic des patients myasthéniques, et du neurologue dans la prise en charge.

Du fait du mode d’évolution de cette pathologie qualifiée par certains de « grande simulatrice », les médecins généraliste voit en effet ces patients souvent avant le neurologue.

Les patients le plus souvent consultent d’autres spécialistes (ORL pour dysphagie, Ophtalmologiste pour ptosis et/ou diplopie) avant de se présenter à un neurologue. Ces erreurs diagnostiques proviennent de la méconnaissance de la myasthénie par les médecins.

D’ailleurs, les patients sont adressés tardivement à la chirurgie notamment en l’absence de lésion tumorale.
II. Etude clinique de la myasthénie

1. Symptomatologie :

1.1 Chronologie des troubles :

La fatigabilité musculaire à l’effort constitue le symptôme essentiel du phénomène myasthénique.

Le déficit est variable dans le temps : il apparaît à l’effort, s’accentue si l’effort est poursuivi et régresse au repos [86,87] ; un déficit durable peut toutefois persister au-delà de l’effort.

Le déficit musculaire est absent le matin au réveil, apparaît dès les premiers efforts et augmente au cours de la journée.

1.2. Topographie des troubles :

Le déficit myasthénique ne peut être analysé en termes de nerfs mais seulement de muscles.

Ce déficit peut apparaître à distance du territoire en activité.

Il atteint préférentiellement certains groupes musculaires :

- **Muscules oculaires extrinsèques**

L’atteinte de la musculature oculaire constitue le mode de présentation initiale le plus fréquent de la maladie dans 85 % selon certaines études.

Elle ne concerne que la musculature oculaire extrinsèque, la musculature intrinsèque étant toujours épargnée.

- L’atteinte des muscles oculomoteurs est responsable d’une diplopie variable dans le temps et intermittente, maximum le soir à l’effort.

- L’atteinte du releveur de la paupière est fréquente ; elle est responsable d’un ptôsis unilatéral ou bilatéral et asymétrique, particulièrement évocateur quand il est à bascule.
- L’atteinte de l’orbiculaire des paupières entraîne une diminution de la résistance au relèvement des paupières, pouvant aller jusqu’à l’impossibilité d’occlusion des yeux.

 • **Muscles pharyngo- laryngés et faciaux :**
 - Troubles de la phonation avec une voix qui devient nasonnée et inintelligible au cours de la conversation.
 - Dysphagie : s’aggravant au fil du repas, parfois responsable de fausses routes. Les formes avec dysphagie importante nécessitent parfois de prendre les anticholinestérasiques une demi-heure avant les repas afin d’éviter les troubles de déglutition.
 - Troubles de la mastication s’accentuant au cours du repas (au point de donner parfois une mâchoire tombante en fin de repas)
 - Mimique inexpressive s’accentuant au cours de l’examen, difficultés à siffler ou à gonfler les joues par atteinte des muscles faciaux.

 • **Musculature axiale et périphérique**
 - L’atteinte axiale prédomine sur les muscles cervicaux, elle peut se manifester par une chute de la tête vers l’avant : « tête tombante» qui est un mode de présentation classique chez le sujet âgé.
 - L’atteinte des membres prédomine à la partie proximale des membres inférieurs, entraînant des difficultés à monter les escaliers et une démarche dandinante.

1.3 Évolution

Les signes initiaux sont très variables d’un patient à l’autre. Les signes de début sont dans 40% des cas oculaires purs, dans 15% des cas bulbares ou oculobulbares et dans 35% des cas la maladie est généralisée d’emblée.
Les symptômes tendent à toucher d’autres territoires musculaires ; dans 75% des cas, la maladie se généralise. Cette évolution se fait surtout dans la première année dans 86% des cas. Lorsque la myasthénie reste localisée aux muscles oculaires après 2 ans d’évolution, dans la grande majorité des cas elle ne se généralise pas. On parle de myasthénie oculaire pure, qui représente environ 15% de toutes les myasthénies [88].

La myasthénie évolue initialement par poussées spontanées ou provoquées séparées par des phases de rémission plus ou moins complètes, laissant parfois persister un handicap permanent. L’évolution de la myasthénie est capricieuse, se caractérisant par une tendance à l’aggravation dans les premières années : pour 85% des patients, le stade de gravité maximum de la maladie est atteint dans un délai inférieur à trois ans. [89]

La myasthénie a un pronostic favorable : taux de mortalité inférieur à 5 % et espérance de vie quasi-normale.

La crise myasthénique :

La crise myasthénique est définie par une poussée de la maladie impliquant les muscles respiratoires ou bulbaire, responsables d’une détresse respiratoire, et nécessitant une ventilation mécanique. Elle impose une prise en charge immédiate en unité de soins intensifs.

Elle survient généralement au cours des 2 premières années d’évolution et peut parfois être inaugurale de la maladie. De 15% à 20% des patients subiront dans leur histoire une crise myasthénique. La mortalité est en déclin depuis les années 1960 avec l’avènement des techniques de réanimation respiratoire mais la durée de la myasthénie reste constante (en moyenne 2 semaines) [90].

De nombreux facteurs déclenchants sont susceptibles d’induire une crise myasthénique :
Certains médicaments dont la liste doit être remise au patient (ANNEXE 2)

Intervention chirurgicale (incluant la thymectomie)

Infections : 40% des cas ; majoritairement les infections respiratoires

Vaccinations

Facteurs endocriniens : grossesse (4 premiers mois), post-partum, période prémenstruelle ;

Hypo ou hyperthyroïdie associée

Traumatisme, stress, surmenage

Introduction d’une corticothérapie, diminution trop rapide d’un traitement

Dans 30% à 40% des cas, aucun facteur déclenchant n’est cependant retrouvé.

Les patients avec un thymome semblent plus exposés aux crises.

Le pronostic de la myasthénie est conditionné par l’atteinte des muscles pharyngolaryngés et respiratoires qui est susceptible de survenir à l’occasion d’une crise myasthénique.

Un seul patient de la série a présenté une crise myasthénique en post opératoire immédiat, ayant nécessité une assistance respiratoire pendant 3 jours.

Crise cholinergique :

Il n’est pas toujours simple de distinguer une crise myasthénique d’une crise cholinergique secondaire à un surdosage d’anticholinestérasiques.

La crise cholinergique partage avec la crise myasthénique la détérioration motrice et respiratoire rapide. Elle se singularise par les signes de surdosage cholinergique : fasciculations abondantes, signes digestifs (nausées, vomissements, diarrhées), hypersalivation, hypersécrétion bronchique, sudation, larmoiement, pâleur, myosis, bradycardie. Elle est beaucoup plus rare que la crise myasthénique mais les deux complications peuvent s’intriquer.
Tableau 5 : Symptômes cliniques lors des crises myasthéniques et cholinergiques

<table>
<thead>
<tr>
<th>Crise myasthénique</th>
<th>Crise cholinergique</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Pupille dilatées</td>
<td>Muscarinergique</td>
</tr>
<tr>
<td>- Tachycardie</td>
<td>Nicotinergique</td>
</tr>
<tr>
<td>- Tonus musculaire effondré</td>
<td>- Myosis</td>
</tr>
<tr>
<td>- Pâleur</td>
<td>- Larmoiement</td>
</tr>
<tr>
<td>- Insuffisance respiratoire</td>
<td>- Peau chaude et rouge, sudation</td>
</tr>
<tr>
<td>- Trouble de la déglutition et de l’élocution</td>
<td>- Hypersalivation, diarrhée, coliques</td>
</tr>
<tr>
<td>- Parésies généralisées</td>
<td>- Bradycardie</td>
</tr>
<tr>
<td></td>
<td>- Fasciculation</td>
</tr>
<tr>
<td></td>
<td>- Crampes dans les mollets</td>
</tr>
<tr>
<td></td>
<td>- Confusion, coma,</td>
</tr>
<tr>
<td></td>
<td>- paralysie respiratoire</td>
</tr>
</tbody>
</table>

1.4 Évaluation de la sévérité de la myasthénie

Le dépistage des signes de gravité est impératif. La survenue en quelques jours de troubles respiratoires avec encombrement, essoufflement, toux inefficace, fausses routes, détérioration motrice rapide doit faire poser le diagnostic de crise myasthénique mettant en jeu le pronostic vital. C’est une urgence absolue qui implique une hospitalisation immédiate en réanimation pour mettre en route, si nécessaire, une assistance ventilatoire.

Le suivi d’un patient myasthénique devrait idéalement se faire de manière reproductible grâce à l’utilisation d’un score myasthénique coté à 100 (ANNEXE 3). Cela permet de suivre et d’évaluer la réponse aux différents traitements et de surveiller l’évolution d’une décompensation aiguë.
2. L'examen clinique

L’examen clinique est généralement pauvre.

On recherche une fatigabilité musculaire lors d’efforts répétés : accroupissement répété, fermeture répétée des yeux...

La manœuvre de Mary Walker consiste à poser un garrot à la racine du bras (tensiomètre gonflé à 20 mm Hg au-dessus de la pression systolique), puis à faire effectuer des efforts répétés de contraction du poing ; lors de la levée du garrot peuvent apparaître un ptôsis ou une diplopie, c’est une épreuve spécifique mais peu sensible, donc rarement utilisée en pratique.

Le test au glaçon constitue une épreuve intéressante en cas de ptôsis, il consiste à appliquer un glaçon à travers une compresse sur la paupière fermée durant 4 minutes, le test est positif quand le ptôsis disparaît transitoirement. (Figure 10)

L’examen neurologique est par ailleurs normal : les ROT sont normaux ; il n’existe aucun trouble sensitif, ni sphinctérien ; il n’existe pas d’amyotrophie.

Le test au glaçon

Figure 10
III. **Etude paraclinique de la myasthénie :**

1. **Tests pharmacologiques**

Le principe est d’analyser le déficit musculaire après l’injection d’un anticholinestérasique.

Le test est positif lorsqu’on note une régression transitoire des signes cliniques sous l’effet de l’injection.

Un résultat négatif n’élimine pas le diagnostic de myasthénie et incite à répéter le test.

Deux tests sont réalisés de façon courante :

1.1. **Le test au Tensilon®** :

Injection IV lente d’une ampoule à 10 mg d’édrophonium (anticholinestérasique d’action rapide) ;

L’effet survient en moins d’une minute et s’épuise en quelques minutes. Cependant, le test peut être positif en d’autres conditions, par exemple, en cas de sclérose latérale amyotrophique, poliomyélite, neuropathies périphériques, myopathies mitochondriales, et même chez des personnes normales.

1.2. **Le test à la Prostigmine®** :

Injection IM ou IV de 0.5 mg à 1 mg de néostigmine méthylsulfate (Prostigmine®), soit une à deux ampoules.

L’effet s’observe après un délai de 15 minutes et dure 30 à 40 minutes.

Dans les deux cas, on injecte 0.25 mg d’atropine en IV avant l’injection de l’anticholinestérasique afin d’éviter les effets secondaires muscariniques du produit.
2. **Explorations électrophysiologiques**

2.1. **L’EMG de stimulo-détectio**

Il met typiquement en évidence un bloc myasthénique neuromusculaire : la stimulation répétitive à basse fréquence (2 à 5 Hz) d’un nerf moteur entraîne de façon physiologique, entre le premier et le cinquième potentiel un petit décément de l’amplitude, qui n'excède jamais 10 %

En cas de myasthénie, ce décément est supérieur à 10 % est signe donc de l'existence d'un bloc de la jonction neuromusculaire, sans préjuger toutefois de son caractère près au post-synaptique.

Cependant la remontée d'amplitude après la chute du 5ème potentiel est volontiers évocatrice de myasthénie (scrupule myasthénique).

Ce test est anormal chez 75% des patients présentant une myasthénie généralisée mais chez moins de 50 % des patients avec une forme purement oculaire.

Sa sensibilité est meilleure sur les muscles proximaux et les muscles faciaux. Afin de sensibiliser l'examen, certains centres proposent de suspendre les anticholinestérasiques quelques heures avant la réalisation de l'EMG.

L’absence de bloc myasthénique à l’EMG n’élimine pas le diagnostic.

Dans notre étude, parmi les 41 EMG réalisés, 6 EMG sont revenu normaux, soit 14.7%

2.2. **Electromyographie en fibre unique** :

L’étude en fibre unique révèle un allongement du jitter (intervalle de temps entre les potentiels d’action de deux fibres musculaires de la même unité motrice). Elle est plus sensible mais moins spécifique, de réalisation délicate, à réserver aux cas difficiles (négativité de l’EMG classique, en particulier dans la myasthénie oculaire).

[91]
Cette technique doit être réalisée au mieux sur un muscle cliniquement atteint et présente une sensibilité supérieure à 97% lorsque l’étude porte sur deux sites distincts [92].

EMG normal et Décrément caractéristique de la myasthénie à la stimulation répétitive (3 Hz)

![Figure 11](image_url)

3. **Examens biologiques**

3.1. **Dosages immunologiques**

3.1.1. **AC anti-RAch :**

Le dosage des anticorps anti-RAch utilise des anticorps humains purifiés incubés avec les immunoglobulines du patient.

La sensibilité de ce test est de 85% pour les formes généralisées et de 50% pour les formes oculaires. Le résultat, bien que donné de manière quantitative, ne peut être interprété que de manière binaire, présence ou absence d’anti-RAch.
Des faux négatifs se voient lors d’un traitement immunosuppresseur ou si le test est réalisé trop précocement dans la maladie. Il est nécessaire de le répéter au cours des premiers mois. Ainsi, 12% des patients initialement anti-RACh négatifs ont une séroconversion positive à 1 an.

Des résultats faux positifs ont aussi été rapportés dans d’autres maladies auto-immunes telles que le lupus érythémateux, la polyarthrite rhumatoïde, des maladies du neurone moteur, des thymomes sans myasthénies et chez des apparentés de patients myasthéniques.

Le taux d’anticorps n’est pas proportionnel à la sévérité de la maladie. Dans le suivi d’un patient, l’amélioration clinique s’accompagne cependant souvent d’une diminution du taux des anticorps.

Ces anticorps sont présents chez 80% des patients ayant une myasthénie généralisée mais chez seulement 55% des patients ayant une myasthénie oculaire. [93]

Dans notre contexte, tous les patients ont bénéficié d’un dosage des AC anti-RACh, revenant positifs dans 85% des cas. Ces résultats sont concordants avec ceux de la littérature (75%-85%) [94,95].

3.1.2. **AC anti-MUSk**

Les patients séronégatifs pour les anticorps anti-RACh, devraient bénéficier d’une recherche d’anticorps anti-MuSK. En effet, 40% des patients séronégatifs pour les anticorps anti-RACh présentent des anticorps anti-MuSK positifs.

La myasthénie avec anti-MUSk est devenue une entité clinique à part entière avec des caractéristiques clinique, diagnostique, physiopathologique, pronostique ainsi que thérapeutique, qui la différencie de la classique myasthénie avec Ac anti-RACh.
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Dans notre série d’étude, l’analyse de ce paramètre s’est avérée non concluante, car la recherche de ces AC n’a pu être faite que chez 4 patients séronégatifs aux AC anti-RACH parmi 6.

3.1.3. **Anticorps anti-LRP4**

Environ 20% des patients avec une forme généralisée mais sans anticorps anti-RACH ou MuSK ont des anticorps contre la molécule LRP4. Cette forme a été décrite très récemment. On ne connaît pas encore précisément le profil des patients ayant ce type d’anticorps.

Le dosage de ces anticorps n’est pas encore disponible en routine.

3.1.4. **Autres anticorps**

3.1.4.1. **Anti RACH à faible affinité**

Le pourcentage de personnes atteintes de myasthénie qui n'ont ni anticorps anti-RACH, ni anticorps anti-MuSK, ni anticorps anti-LRP4 - on parle de myasthénie "triple séronégative"-, est de l’ordre de 2 à 5%. Quelques travaux indiqueraient que certains de ces patients ont en fait des anticorps anti-RACH qui ne sont pas détectés par le test diagnostic classique, lequel ne reconnaît que la forme native du RACH.

3.1.4.2. **Anticorps anti muscles striés**

Connus bien avant les anticorps anti-RACH, les AC anti-muscle striés ont été d’abord mis en évidence en immunofluorescence puis par d’autres techniques immunologiques.

Ils sont des anticorps dirigés contre différents constituants des myofibrilles (myosine, actine, tropomyosine, troponine, ...). La présence d'anticorps anti-muscle strié est corrélée au développement d’un thymome. Ils se rencontrent également après lésion du tissu myocardique (chirurgie, infarctus, rhumatisme articulaire aigu).

Dans notre série, cet examen n’a pas été réalisé chez aucun de nos patients.
3.1.4.3. **Anticorps anti-titine**

Les anticorps anti-titine sont également étroitement associés à la présence d’un thymome chez le patient myasthénique de moins de 60 ans. [96]

3.1.4.4. **Anticorps anti récepteur à la ryanodine**

Ces autoanticorps ne sont pas recherchés en pratique courante. Ils ont été déteetés par ELISA, immunotransfert et inhibition de la capture de RyR marquée. Ils sont décelés dans les myasthénies graves. (Voir chapitre physiopathologie)

3.2. **Les autres examens biologiques**

D’autres examens biologiques sont nécessaires pour rechercher une maladie auto-immune associée : TSH, T3, T4 anticorps antithyroïdiens, anticorps anti-DNA et facteur rhumatoïde.

4. **Explorations radiologiques**

L’imagerie thoracique, scanner ou imagerie par résonnance magnétique (IRM), est indiquée, une fois le diagnostic de myasthénie confirmé, afin de rechercher une anomalie thymique.

Un thymome est associé, dans 10% à 30% des cas à la myasthénie, surtout lorsqu’elle débute après 40 ans [97]. Lorsque le thymome est présent, les AC anti-RACH sont en général en quantité élevée et on trouve également, avec une grande fréquence, des Ac anti-muscles striés et des AC anti-titine à un taux élevé, mais non spécifique de la myasthénie [98]

4.1. **La TDM**

Il s'agit d'une masse supracardiaque, antérieure, en particulier dans les étages moyen et supérieur, asymétrique, bien limitée, parfois polycyclique, homogène, se rehaussant faiblement ; 35 %sont découvertes sur une radiographie thoracique chez
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Mlle. ABOUTALEB Nezha

un patient asymptomatique ; 20 à 30 %d'entre elles contiennent des calcifications, et rarement des zones kystiques visibles au scanner.

Au scanner, le reliquat thymique est toujours visible avant 30 ans, retrouvé dans 70 % des cas entre 30 et 50 ans, et dans moins de 20 % des cas après 50 ans [99,100].

La TDM permet l'exploration de l'ensemble du thorax voire de l'abdomen avec des coupes avant et après injection de PDC (Temps artériel et tardif).

Avec les scanners multibarettes, on réalise des coupes fines et surtout des reconstructions multi planaires.

TDM : Sensibilité 91%, spécificité 97%, 25% des thymomes non vus à la radiographie standard.

Le scanner est généralement réalisé sans injection de produit de contraste, d'autant plus que des cas d'aggravation de myasthénie, bien que rares [101], ont été décrits suite à une injection intraveineuse de produit de contraste iodé [102].

4.2. L’IRM : Permet une exploration multiplanaires avec des séquences pondérées T1, T2 et T1 avec Fat Sat et gadolinium, Pas d’avantage par rapport au scanner, surtout multibarettes. Intérêt surtout dans l’extension cardiaque et vasculaires, ou pour caractériser certaines tumeurs.

L’IRM est intéressante pour le diagnostic et pour évaluer la résécabilité des tumeurs thymiques, même si elle est concurrencée par le scanner dans cette indication [103].

Enfin, les kystes du médiastin (kystes bronchogéniques, kystes pleuropéricardiques, lymphangiomes kystiques...) sont parfaitement mis en évidence sur les séquences pondérées en T2. (En pathologie thoracique, l’inconvénient majeur de l’IRM est son inaptitude à explorer le parenchyme pulmonaire, cela pour deux raisons : le faible signal disponible, l’IRM étant l’imagerie des protons de l’eau et les artefacts de susceptibilité magnétique propres au parenchyme pulmonaire. Pour cette raison, l’IRM thoracique est généralement un examen de deuxième intention, réalisée après le scanner.)

Les structures liquidiennes sont en effet difficiles à distinguer des structures tissulaires en scanner, alors que leur reconnaissance est évidente en IRM grâce à leur franc hypersignal T2.

Si, contrairement aux produits de contraste iodés, les chélates de gadolinium ne sont pas néphrotoxiques, leur utilisation doit désormais tenir compte du risque de fibrose néphrogénique systémique (FNS). Depuis 2006 et la première description de cas de FNS faisant suite à des injections de gadolinium chez des patients insuffisants rénaux, la prudence est de mise en cas d’insuffisance rénale sévère. Cette maladie, bien que rare, peut être sévère, voire mortelle, et certains produits sont contre-indiqués en cas de clairance de la créatinine inférieure à 30ml par minute : Omniscan® (gadodiamide, GE Healthcare, Milwaukee, Wi, États-Unis) et Magnevist® (Gd-DTPA, Bayer Schering Pharma, Berlin, Allemagne).

Les inconvénients de l’IRM pour le patient sont mineurs : la durée d’examen parfois longue, entre 15 et 45minutes, l’immobilité indispensable pendant cette période et le bruit intense des gradients de champ magnétique nécessitant un casque de protection auditive.

PET SCAN et Explorations isotopiques :

La tomographie par émission de positons (TEP) est une technique d’imagerie réalisée dans un service de médecine nucléaire (« service de radio-isotopes », ou
« scintigraphies »), qui a pour but de révéler des anomalies qui s’expriment à l’échelle moléculaire.

L’hypermétabolisme des thymomes de bas risque est très modéré, alors que celui des carcinomes thymiques est marqué. De façon simple et générale, on peut retenir que l’intensité d’un hypermétabolisme reflète le degré de prolifération cellulaire de la tumeur et donc son agressivité.

Les explorations isotopiques permettent une surveillance post thérapeutique pour distinguer entre une récidive et une simple fibrose.
5. **Formes cliniques**

Il est classique de distinguer au sein de la myasthénie différentes formes selon les symptômes (forme oculaire versus forme généralisée), selon l’âge de début (avant ou après 40 ans), selon les caractéristiques thymiques (hyperplasie thymique, involution normale, thymome) et selon la séropositivité aux autoanticorps (anti-RACH, anti-MUSK ou séronégativité). Ces distinctions permettent de guider le traitement mais également d’affiner le pronostic de la maladie.

1. **Myasthénie oculaire**

Dans le cadre de la myasthénie pédiatrique, la forme oculaire pure est plus fréquente que la forme généralisée si le début est prépubertaire. Chez l’adulte, si le début est oculaire dans 40 à 50 % des cas, ce n’est que chez 10 à 15 % des patients, que l’atteinte restera localisée aux muscles oculaires après deux ans. On sera alors en droit de parler de myasthénie oculaire pure, même si, dans de rares cas, la généralisation peut survenir plus tardivement.

A l’heure actuelle, il n’existe pas de test permettant de déterminer le risque de développer une myasthénie généralisée chez une personne atteinte d’une myasthénie oculaire. C’est pourquoi une équipe britannique a réalisé une étude chez 101 personnes atteintes de myasthénie oculaire depuis au moins 3 mois et ne prenant pas d’immunosuppresseur pour identifier des facteurs prédictifs de survenue secondaire de myasthénie généralisée.

Sur les 101 personnes, 32 ont développé une myasthénie généralisée au bout d’un an et demi et 19 dans les 2 ans.
Les chercheurs ont identifié 3 facteurs significativement prédictifs :

- La séropositivité aux autoanticorps,
- La présence d’au moins une autre maladie (y compris une maladie auto-immune) et
- L’hyperplasie thymique.

Ils ont également mis au point un score pronostic permettant de qualifier le risque de développer une myasthénie généralisée comme faible ou fort [105].

Si la myasthénie oculaire est considérée comme bénigne du fait de son caractère localisé, elle peut être très gênante du fait de l’importance de la diplopie.

Dans notre série, 14 malades sur 41 (34,1%) ont une forme oculaire pure contre 27 malades (65,9%) qui avait une forme généralisée.

Les caractéristiques de la myasthénie oculaire de l’adulte sont les suivantes :

- Prédominance masculine,
- Age de survenue habituellement au-delà de 40 ans,
- Rareté du thymome.
- La variabilité franche, dont le ptosis alternant est la manifestation la plus caractéristique, est très utile pour poser le diagnostic qui est avant tout clinique
- Les anticorps anti- RACH sont absents dans la moitié des cas,
- La réponse aux anticholinestérasiques est fréquemment nulle ou faible,
- L’électromyographie conventionnelle est fréquemment négative, y compris au niveau des orbiculaires. L’étude en fibre unique du territoire facial a un rendement diagnostique bien supérieur.
2. **Myasthénie juvénile** :

- Il s’agit de myasthénie auto-immune débutant dans l’enfance. Elle peut apparaître à tout âge dans l’enfance, 10 à 15 % débutent leur maladie avant l’âge de 15 ans, le plus souvent à partir de 10 ans. Dans notre étude nous avons répertorié 2.43% de cas de myasthénie juvénile.
- En revanche, le statut pubertaire modifie le profil de la myasthénie, puisque avant la puberté les myasthénies oculaires pures sont les plus fréquentes, alors qu’après la puberté ce sont les formes généralisées qui prédominent [106].
- Il existe une prépondérance féminine de 50% à 86%[106].
- Il existe des disparités ethniques : les formes juvéniles restent rares dans la population caucasienne, représentant 10% à 15% des myasthénies auto-immunes, contre 43% dans la population asiatique [107].
- Les signes cliniques sont identiques à ceux constatés chez l’adulte
- Le taux de positivité des AC après la puberté est superposable à celui des formes adultes ; en revanche, il est plus faible avant la puberté, avec une positivité dans seulement 50% des cas.
- On retrouve volontiers une hyperplasie thymique, les thymomes sont rares.
- La prise en charge thérapeutique est la même que celle de l’adulte : on préconise d’éviter les corticoïdes, ou de les utiliser à la dose minimale efficace.
- Peu de données sont disponibles sur l’intérêt de la thymectomie.

3. **Myasthénie du sujet âgé**

La myasthénie n’est pas rare après 60 ans (late onset myasthenia gravis) ; des études épidémiologiques récentes indiquent une incidence croissante. Un début très tardif, au-delà de 80 ans, est possible (Very late onset myasthenia gravis). L’errance diagnostique est fréquente car le diagnostic de myasthénie n’est pas évoqué à cet
âge, l’accident vasculaire étant la première hypothèse. Si l’expression clinique et les tests diagnostiques sont très proches de la myasthénie classique, la forme tardive se caractérise par certaines particularités :

- prédominance masculine,
- plus grande fréquence des formes oculaires pures,
- sévérité plus grande pour les formes généralisées du fait d’une composante bulbaire franche,
- risque de thymome important à la cinquantaine, devenant exceptionnel après 70 ans et, en l’absence de thymome, involution thymique associée significativement à l’HLAB7.,
- la stratégie thérapeutique et la réponse sont identiques à celles du sujet plus jeune,
- La thymectomie relativement peu pratiquée chez les myasthéniques âgés est expliquée par la grande fréquence de l’involution thymique d’une part et le risque opératoire suppose plus grand d’une autre part [108].

4. **Myasthénie de l’adulte jeune** :

Elle débute avant l’âge de 40 ans avec une nette prédominance féminine. La majorité de ces patients présentent des anticorps anti-RACH et des anomalies thymiques (hyperplasie thymique ou thymome).

5. **Myasthénie et grossesse**

La fertilité n’est pas affectée par la maladie, c’est pourquoi la grossesse n’est pas exceptionnelle dans la myasthénie. Au cours de la grossesse, il y a un risque sérieux d’exacerbation des symptômes myasthéniques dans 30 à 40% des cas, surtout
dans les trois premiers mois et encore plus dans les jours et premières semaines qui suivent l’accouchement.

L’accouchement par voie basse sous analgésie péridurale reste privilégié, programmé avec les obstétriciens et les anesthésistes, à proximité d’un service de néonatologie, compte tenu du caractère imprévisible de la survenue d’une myasthénie néonatale [109].

6. **myasthénie néonatale**

Il s’agit d’une maladie auto-immune survenant chez le nouveau-né de mère myasthénique. Entre 10 et 20% des nouveaux nés de mère myasthénique (même en apparente rémission) présentent une myasthénie néonatale (MNN) qui est un syndrome myasthénique transitoire dû à un transfert transplacentaire passif des anticorps maternels anti-RACl, beaucoup plus rarement anti-MuSK. [110].

Les symptômes se manifestent chez le nouveau-né précocement, durant les 24 premières heures, parfois un peu plus tardivement (jusqu’au 3ᵉ jour) et persistent en général 2 à 5 semaines [111], au maximum 3 mois, puis régressent spontanément sans séquelles.

La MNN se manifeste habituellement par une hypotonie, des troubles de succion et de déglutition, une faiblesse du cri. Le risque de fausse route et de détresse respiratoire doit être dépisté et imposer le transfert en réanimation pour assurer une nutrition par sonde et une assistance ventilatoire. Aucune corrélation ne peut être établie entre la gravité de la myasthénie maternelle et la survenue ou la sévérité de la myasthénie néonatale. Selon certains auteurs le risque de MNN serait accru si le taux d’anti-RACl maternel est élevé, mais pour d’autres, il n’y aurait pas de corrélation. Il est donc conseillé d’accoucher dans une structure permettant la prise en charge de la mère et de l’enfant en réanimation (maternité de niveau 3).
Le traitement de myasthénie néonatale transitoire n’est pas bien codifié, une prise en charge symptomatique peut suffire dans les formes modérées, parfois un traitement anticholinestérasique est utile [112].

7. **Myasthénie et pathologie thymique** :

Environ 90% des patients myasthéniques présentent une anomalie thymique : dans 70% à 80% des cas il s’agit d’une hyperplasie thymique et dans 10-20% des cas d’un thymome. [113]

7.1. **L’hyperplasie thymique** :

Est retrouvée dans pratiquement 100% des formes précoces associées aux anticorps anti- RACH [54], dans la majorité des formes « double séronégatives » (sans anticorps anti- RACH ni anti MuSK), et n’est jamais mise en évidence dans les myasthénies associées aux anti- MuSK.

7.2. **Thymome** :

Dans 10% à 15% des myasthénies, on met en évidence un thymome. Les patients atteints de thymome sont en général âgés de plus de 40 ans et ils présentent une fréquence très élevée d'auto- anticorps : anticorps anti- muscles striés, anti- titine et anti récepteur à la ryanodine.

Le pronostic de la myasthénie associée à un thymome semble généralement moins bon que celui de MG sans thymome (voir le travail réalisé au sein du même service en 2013) [114]

Ces patients ont généralement des taux élevés d’anticorps anti- RACH [115].

Dans notre contexte, 90% de nos patients myasthéniques ont une anomalie thymique : Dans 46% des cas il s’agit d’une hyperplasie thymique et dans 48% des cas d’un thymome.
43% de nos patients présentent un thymome, ce qui ne concorde pas avec les données de la littérature médicale. Ceci est probablement lié au biais de recrutement (biais de sélection), un patient myasthénique avec thymome a l’imagerie est orienté directement vers un chirurgien thoracique ; Or les myasthénique sans thymome a l’imagerie ne le sont pas car aucun consensus ne recommande la thymectomie pour cette catégorie de patient.

Une autre remarque importante au regard de cette série est le nombre de thymomes dépistés, mettant encore l’accent sur la nécessité du diagnostic précoce et du bilan exhaustif de la myasthénie,

Tableau 6 : Fréquence des types histologiques dans la littérature

<table>
<thead>
<tr>
<th>Type histologique</th>
<th>BERRIH</th>
<th>DE PERROT</th>
<th>MENAGE</th>
<th>NOTRE SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperplasie thymique</td>
<td>37%</td>
<td>42%</td>
<td>66%</td>
<td>42%</td>
</tr>
<tr>
<td>Thymome</td>
<td>13%</td>
<td>36%</td>
<td>10%</td>
<td>43%</td>
</tr>
<tr>
<td>vestige</td>
<td>50%</td>
<td>32%</td>
<td>24%</td>
<td>10%</td>
</tr>
</tbody>
</table>

8. **Myasthénie et maladies associées :**

L’association myasthénie-autre(s) affection(s) auto-immune(s) n’est pas exceptionnelle. Par ailleurs, une affection auto-immune est souvent retrouvée dans la famille proche. A côté des dysthyroïdies (maladie de Basedow, thyroïdites) les plus fréquemment associées (5 à 10% des patients), de nombreuses autres pathologies sont rencontrées :

Polyarthrite rhumatoïde, lupus érythémateux systémique, sclérodermie, anémie de Biermer, anémie hémolytique, vitiligo, pemphigus, syndrome de Raynaud, cirrhose biliaire primitive, insuffisance surrénalienne, syndrome d’hyperactivité continue
(syndrome d’Isaac), sarcoïdose, syndrome de Gougerot-Sjögren, myopathie inflammatoire, neutropénie et thrombopénie, mastite auto-immune.

9. **Myasthénie séropositive** :

Constitue la forme la plus fréquente des myasthénies auto-immunes. Les anticorps anti-RAch sont habituellement retrouvés chez 80 à 90 % des myasthénies généralisées et chez 50 à 60 % des myasthénies oculaires [116].

Ces résultats sont concordants avec les nôtres.

10. **Myasthénie avec anticorps anti-MuSK**

- Il s’agit le plus souvent de femmes jeunes (environ 90% des cas publiés)
- La maladie débute pendant la quatrième décade.
- Caractère généralisé de la myasthénie
- Le tableau clinique est globalement sévère : atteinte des muscles faciaux, bulbaires et respiratoires, mais rarement des signes oculaires avec des poussées myasthéniques plus fréquentes.
- Atteinte des extenseurs du cou avec dropped head syndrome ou « tête tombante » semble plus fréquente
- La fréquente négativité de l’exploration électromyographique (absence de décrément).
- Le recours aux immunosuppresseurs est souvent nécessaire.
- Atrophie musculaire est fréquente en particulier une atrophie linguale et massétérine [117].
- Contrairement aux patients avec des anticorps anti-RACh, il existe une bonne corrélation entre le taux des anticorps anti-MuSK et la sévérité clinique pour cette catégorie de patients [118]
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

- Une mauvaise réponse aux traitements anticholinestérasiques.
- Une meilleure efficacité des EP par rapport aux IgIV dans le traitement des poussées [119].
- Le taux de rémission complète est plus faible dans la M-MuSK que dans la M-RACH.
- Absence en général de pathologie thymique associée [120] ; involution thymique, absence de thymome. L’intérêt de la thymectomie reste à évaluer dans la M- MuSK.
6. Diagnostic différentiel

1. Syndrome myasthénique

1.1. Syndrome d’Eaton- Lambert

Il est présynaptique, auto-immun, dû à des anticorps anti-canaux calciques. Il se manifeste par un déficit proximal des membres inférieurs au premier plan avec des signes oculobulbaires discrets se limitant souvent à un léger ptosis.

Les arguments en faveur du diagnostic sont :

- la présence d’une dysautonomie (sécheresse buccale, impuissance)
- l’abolition des réflexes rotuliens qui peuvent réapparaître à l’effort,
- les données électromyographiques très évocatrices qui associent décrément myasthénique, réduction d’amplitude des potentiels moteurs et incrément à l’effort [121,122].
- La recherche d’anticorps anti-canaux calciques complétera le bilan mais elle peut être négative.
- Dans plus de 50% des cas, le SMLE est paranéoplasique, associé à un cancer bronchique à petite cellules. Le plus souvent, le SMLE précède la découverte du cancer.

1.2. Botulisme

C’est une cause rare mais grave de syndrome myasthénique présynaptique dû à Clostridium botulinum.

Le diagnostic sera évoqué sur les éléments suivants :

- survenue des symptômes 12 à 24h après ingestion de conserve avariée, mais également après injection d’héroïne
- présence dans un contexte de troubles digestifs, d’une mydriase aréactive associée à une sécheresse de la bouche.

Le diagnostic sera confirmé par la détection de toxine dans le sang.
1.3. **Intoxication aux organophosphorés**

Ingérés dans un contexte de tentative suicidaire, bloquant l’acétylcholinestérase.

1.4. **Envenimation par morsure de serpent**

Cobras, mambas et serpents de mer comportent des neurotoxines responsables de syndromes myasthéniformes aigus et graves.

2. **Syndromes myasthéniques iatrogènes**

La D-pénicillamine est réputée induire des myasthénies. Celles-ci apparaissent 2 à 5 ans après l’initiation du traitement. La présentation clinique est non spécifique. Les taux d’anticorps anti-RACH sont élevés. Le tableau clinique est complètement réversible dans les 2 mois qui suivent l’arrêt de la D-pénicillamine. La plupart des cas ont été décrits dans un contexte de traitement pour une polyarthrite rhumatoïde. La physiopathologie est mal connue.

3. **Myasthénies congénitales**

Ils constituent le principal problème avec une forme séronégative de myasthénie infantile lorsqu’ils débutent après la période néonatale.

En faveur du caractère congénital :

- Une installation le plus souvent progressive, insidieuse (mais certaines formes peuvent être brutales)
- Une histoire familiale
- L’existence d’une consanguinité
- La présence d’une note myopathique (atrophie musculaire, déficit permanent, scoliose)
- Difficultés d’alimentation et de croissance dans les premières années de vie.
4. Sclérose en plaques

Devant une diplopie inaugurale chez un jeune adulte, une sclérose en plaques est fréquemment évoquée.

Les arguments forts en faveur de la SEP :
- La notion de baisse d’acuité visuelle conduisant à rechercher une névrite optique,
- la présence de signes sensitifs, d’un syndrome vestibulaire, cérébelleux, pyramidal,
- la mise en évidence d’hypersignaux à l’IRM cérébrale

5. Polyradiculonévrite aiguë

En cas de déficit sur quelques jours des membres, de la face, éventuellement associé à des troubles de déglutition, voire des muscles oculaires, le diagnostic de polyradiculonévrite aiguë de Guillain Barré peut se discuter.

Le diagnostic sera redressé sur les éléments suivants :
- Présence de troubles sensitifs, aréflexie
- Ralentissement des vitesses de conduction motrices ou bloc de conduction à l’ENMG associé à des signes neurogènes
- Dissociation albumino-cytologique à la ponction lombaire (parfois absente initialement).

(ANNEXE 4)
7. Traitement

1. Objectifs

Le traitement a plusieurs objectifs : réduire au maximum les symptômes et leur impact sur la vie personnelle et professionnelle, prendre en charge les complications graves menaçant les fonctions vitales, et limiter l’évolutivité de la maladie.

Il doit prendre en compte, outre la sévérité du déficit moteur, la tolérance des traitements, les risques thérapeutiques, l’impact social et professionnel de la maladie et les attentes du patient.

L’objectif thérapeutique est d’obtenir une rémission complète ou au moins un « état de manifestations minimales » dans la classification MGFA (Annexe 5). En pratique cependant, quelles que soient les mesures thérapeutiques, un nombre non négligeable de patients reste aux stades II voire III MGFA.

Le recours aux anticholinestérasiques et le respect des contre-indications médicamenteuses (Annexe 3) sont toujours de mise.

2. Moyens

2.1. Anti-cholinestérasiques :

Le traitement de première intention repose dans tous les cas sur les anticholinestérasiques ; qui augmentent la quantité d’ACh disponible au niveau de la plaque motrice par inhibition réversible de l’hydrolyse enzymatique de l’ACh dans la fente synaptique.

Ils constituent le traitement symptomatique de base de la myasthénie et sont le premier traitement qui doit être initié en cas de suspicion de myasthénie ou de myasthénie avérée.
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

• Les formes orales disponibles

Ils sont représentées par : pyridostigmine bromure (60 mg) et le chlorure d’ambenonium (10 mg). Ce sont les seuls médicaments à disposer de l’AMM dans la myasthénie.

Le traitement par voie orale commence généralement par une dose de

30–60 mg de pyridostigmine (Mestinon®) 4 fois/jour chez l’adulte, 0,5–1,0 mg/kg chez l’enfant à la même fréquence. L’effet s’installe après env. 30 minutes et la durée d’action est d’env. 4–6 heures, avec d’importantes variations interindividuelles.

Le traitement doit être adapté individuellement aux besoins du patient ; des doses d’env. 600 mg/jour et des intervalles de moins de 3 heures témoignent d’un effet limite du médicament.

Il est parfois nécessaire d’utiliser d’autres anti-cholinestérasiques en raison des effets indésirables de la pyridostigmine. Le chlorure d’aménonium (Mytelase) est indiqué en cas d’intolérance au bromé ou d’effets indésirables gastro-intestinaux très marqués de la pyridostigmine.

En pratique :

- Les anti-cholinestérasiques sont efficaces dans toutes les formes de la maladie (séropositives, séronégatives, oculaires, généralisées...),
- Leur titration est progressive,
- Les prises unitaires doivent toujours être espacées d’au moins 4 heures pour éviter les effets cumulatifs et les surdosages.
- Les effets positifs sont variables d’un sujet à l’autre.
- Leur délai d’action est rapide.
- Il n’y a pas d’avantage à associer deux anticholinestérasiques [123]
Il faut toujours bien insister sur le fait que le traitement efficace d’un groupe musculaire peut être à l’origine de symptômes de surdosage (fibrillation) dans d’autres muscles et souvent aussi d’effets indésirables autonomes difficilement tolérables qui doivent alors être traités par atropine

- Les formes sous-cutanées (pyridostigmine)

Ils peuvent être proposées de manière ponctuelle dans certaines décompensations aiguës, ou éventuellement une vingtaine de minutes avant les repas, chez les patients présentant une fatigabilité à la mastication ou à la déglutition, et en attendant que le traitement de fond soit stabilisé.

- Les formes orales à libération prolongée (pyridostigmine bromure retard)

Ils ne sont disponibles que sous ATU (autorisation temporaire d’utilisation). Il n’existe qu’un seul dosage (180 mg) dont la prescription est réservée aux patients présentant une recrudescence nocturne ou au petit matin de leurs symptômes myasthéniques.

- Comparaison des différents inhibiteurs de l’acétylcholinestérase

Les IACH disponibles et leurs plus importantes propriétés sont présentés dans l’annexe IX.
Lorsque la myasthénie reste invalidante en dépit des anticholinestérasiques, il faut recourir à d’autres moyens thérapeutiques :

- Traitement de fond (thymectomie, corticotherapie, immunosuppresseurs) ;
- Traitement à court terme d’une poussée sévère : plasmaphérèses, immunoglobulines intraveineuses.

Efficacité

Efficaces dans 50% à 70% des cas sur un ptosis isolé, ils restent le plus souvent insuffisants lorsque des troubles oculo-moteurs sont présents, ne dépassant pas 20 % d’efficacité [124].

En moyenne, 50% des patients atteints de myasthénie oculaire sont non ou peu répondeurs au traitement anticholinestérasique et nécessitent un traitement immunosuppresseur, en général une corticotherapie, pour améliorer leurs symptômes.

Depuis 2011, les auteurs, comme à cette époque, n’ont recensé aucun essai contrôlé, randomisé, réalisé sur un grand nombre de patient sur les effets des traitements par inhibiteurs d’acétylcholinestérase dans la myasthénie. Seul un nouvel essai randomisé, croisé, a été réalisé chez 10 personnes atteintes de myasthénie (3 d’une forme oculaire et 7 d’une forme généralisée) comparant la Néostigmine à un placebo pendant 2 semaines. Les symptômes ont été améliorés sous Néostigmine, ce qui n’a pas été le cas sous placebo. Les auteurs concluent que malgré l’absence d’essai contrôlé, randomisé, approprié, l’efficacité des inhibiteurs d’acétylcholinestérase est suffisamment mise en évidence dans des études observationnelles qu’il n’est pas nécessaire de mettre des patients sous placebo dans le cadre de nouveaux essais [125].

Ce traitement est peu efficace chez les personnes atteintes d’une myasthénie auto-immune avec anti-MuSK.
2.2. **Immunothérapie au long cours**

2.2.1. **Le Traitement de première ligne**

- **Corticoïdes** : prednisone (Cortancyl®), prednisolone (Solupred®).

Les corticoïdes ont différents sites d’action, ils influencent notamment la distribution et la migration des cellules T et des monocytes. Quoiqu’il en soit, leur effet bénéfique sur la myasthénie est garanti.

Il n’y a pas de règle unanimement admise précisant comment les corticoïdes doivent être utilisés.

En cas de myasthénie généralisée, le traitement initial habituel est de 1 mg/kg/jour de prednisone ou prednisolone. La survenue d’une aggravation des symptômes pendant les 15 premiers jours sous corticoïdes est fréquente et préoccupante surtout lorsque la myasthénie est déjà sévère (risque de crise myasthénique). C’est pourquoi, il est recommandé de débuter le traitement sous contrôle clinique strict, préférentiellement en milieu hospitalier. En l’absence de signes inquiétants (bulbaires et/ou respiratoires), lorsque le patient est réticent pour l’hospitalisation, on propose une introduction à dose progressive sur 2 à 4 semaines pour minimiser les risques d’aggravation. Cependant, des doses plus faibles peuvent être données si des effets secondaires sont redoutés (en cas d’obésité ou de diabète).

Le délai d’action est de 2 à 4 semaines en moyenne.

En principe, la corticothérapie ne doit être diminuée qu’après obtention d’une amélioration significative (manifestations minimales de type MGFA classe II). Une réduction du corticoïde ne réussit généralement que si une autre immunosuppression est mise en route à long terme. Malgré cela, de nombreux patients ont besoin d’une corticothérapie à long terme, la plupart du temps à faibles doses [126].
Azathioprine (Imurel®),

Recommandé comme médicament de première ligne permettant de remplacer les corticoïdes. L’Azathioprine est le seul agent immunosuppresseur qui ait été démontré capable d’améliorer la myasthénie dans un ECR [127].

L’immunosuppression doit être complétée en même temps ou peu après le début de la corticothérapie par l’analogue des purines azathioprine, qui interfère avec la prolifération des cellules T et B. Elle est extrêmement bien tolérée bien que des réactions idiosyncrasiques puissent se manifester en début de traitement avec malaise, exanthème et troubles gastro-intestinaux.

Son effet ne se manifeste en outre qu’après 6-12 semaines et c’est après ce délai que la dose du corticoïde peut être progressivement diminuée, par exemple de 5 mg/ mois jusqu’à réapparition ou aggravation des symptômes myasthéniques. L’efficacité de l’azathioprine a été prouvée dans de nombreuses études non contrôlées et une étude contrôlée en double aveugle, qui a comparé la prednisone seule associée à l’azathioprine [127].

Pour en prévenir les éventuels effets indésirables à long terme, il faut tenter un sevrage après quelques années, avec risque d’exacerbation de la myasthénie.

L’Azathioprine ne semble pas être nocif pour le foetus. De nombreuses grossesses se sont produites sans complications chez des patientes transplantées recevant de l’Aza.

Pour l’Azathioprine, le dosage doit rapidement atteindre 3mg/kg/jour en 3 doses (si l’estomac le tolère) et la dose doit être ajustée en fonction de la prise de sang mensuelle.

L’administration d’Azathioprine peut réduire la maturation de la moelle osseuse et entraîner un dysfonctionnement hépatique avec cirrhose micronodulaire ; une surveillance stricte mensuelle s’impose.
En cas d’échec de l’azathioprine, les alternatives sont mycophénolate mofétil, ciclosporine A et cyclophosphamide. Ce sont des substances qui ont suffisamment fait la preuve de leur efficacité dans la myasthénie, en partie dans des études contrôlées (ciclosporine A), mais qui ne doivent être utilisées pour le moment qu’en cas d’intolérance ou d’échec de l’azathioprine en raison de résultats encore insuffisants (mycophénolate mofétil) ou de leurs effets indésirables (ciclosporine A, cyclophosphamide) [128].

Mycophénolate de mofétil (Cellcept®),

Le mycophénolate mofétil est un inhibiteur de l'inosine monophosphate déshydrogénase, il inhibe ainsi la synthèse des nucléotides à base de guanine, altère la prolifération des lymphocytes B et T.

Chez les patients intolérants ou non répondeurs à l’Azathioprine, il peut-être essayé (Recommandation niveau B)

La posologie recommandée est de de 2 g/jour en deux prises. En général, la tolérance est bonne (moins d’effets secondaires que l’azathioprine), mais le gain d’efficacité par rapport à l’azathioprine est souvent décevant. Comme pour l’azathioprine, le traitement ne doit être arrêté qu’après plusieurs années de stabilisation. Contrairement à l’azathioprine, le mycophenolate est contre-indiqué pendant la grossesse.

Effets indésirables : nausées, diarrhées et céphalées ; risque de lymphome ?

2.2.2. Les Traitements de seconde ligne

Ils sont à utiliser lorsque les traitements précédents n’ont pas permis de contrôler la myasthénie ou ont été mal tolérés. Le choix dépend de la gravité du tableau clinique, du terrain, des délais d’action des différents traitements et de leurs effets secondaires qui tous doivent être pris en considération. L’avis d’un centre de
référence est nécessaire. Aucun des traitements de seconde ligne n’a démontré sa supériorité et dans tous les cas, leur efficacité doit être évaluée sur 9 à 12 mois.

Des anticorps sont de plus en plus utilisés surtout en cas de symptomatologie généralisée insuffisamment maîtrisée, documentés uniquement dans des séries de cas jusqu’ici mais qui semblent avoir un grand potentiel thérapeutique, notamment le rituximab.

Rituximab

Le rituximab est prometteur ; un anticorps monoclonal antiCD20 (inhibiteur des cellules B), est actuellement proposé dans les formes résistantes aux corticoïdes et à l’azathioprine.

Son coût est élevé, mais les résultats sont bons chez certains patients tant dans les formes séropositives classiques, que dans les formes avec anticorps antiMuSK [129].

La posologie proposée est de 375 mg/m2 par semaine en perfusion intraveineuse, quatre semaines de suite ou 1 g, deux fois (à15 jours d’intervalle). À ce jour, la supériorité de l’un ou l’autre de ces schémas n’a pas été démontrée.

La prévention d’une réaction allergique grave impose avant l’injection de Rituximab un protocole préventif par solumedrol et antihistaminique.

Les complications sont rares, mais les traitements immunosuppresseurs concomitants ou antérieurs augmentent le risque d’infection opportuniste (et notamment d’infection par virus JC). Bien que pour l’instant aucun cas de LEMP n’ait été rapporté chez des patients myasthéniques traités par Rituximab, ce risque doit être exposé aux patients avant la mise en route du traitement.

Par ailleurs les conditions d’arrêt du rituximab sont mal connues.

Le délai d’action est de 2 à 4 mois.
β Ciclosporine (Néoral® Sandimmun®) et Tacrolimus (Prograf®)

TT de 2ème ligne (niveau B, études classe II et III)

Ces molécules ont permis d’améliorer des myasthénies réfractaires aux autres traitements mais elles nécessitent une surveillance étroite et une adaptation des posologies du fait de leurs effets secondaires sérieux : (Toxicité rénale, HTA...).

β Méthotrexate

TT de 2ème ligne (bonne pratique)

Essai phase II en cours (Barohn 2012)

Sa tolérance est bonne, le risque d’aplasie, d’insuffisance hépatique ou de pneumopathie interstitielle restant faible.

β Le Cyclophosphamide (Endoxan®)

En bolus mensuels est réservé pour des indications particulières :
- Échec des autres thérapeutiques,
- Association à un lupus grave

Traitement de 3ème ligne

2.3. Immunothérapie à court terme

β Les échanges plasmatiques (plasmaphérèse) et les immunoglobulines intraveineuses

Leur principal atout est leur rapidité d’action, et leur objectif est la diminution ou la séquestration des anticorps anti RAch.

Les immunoglobulines intraveineuses neutralisent les auto-anticorps anti récepteurs de l’ACh.

Les échanges plasmatiques épurent le sang d’un certain nombre de substances, comme les autoanticorps anti- RACh qui circulent dans le sang.
La réalisation de 3 à 5 échanges plasmatiques (EP) ou l’administration de 1,2 à 2 g/kg d’immunoglobulines intraveineuses (Ig IV) sur 3 à 5 jours sont habituellement recommandées.

La comparaison de ces deux traitements montre une efficacité comparable tant concernant le délai d’action (qui atteint son maximum en 12 jours pour les 2 techniques), que le pourcentage de patients répondeurs [130].

Les effets secondaires sont plus importants dans le groupe EP, ce qui incite le plus souvent à privilégier d’abord les Ig IV ; une surveillance stricte de la fonction rénale est indispensable, des cas exceptionnels d’insuffisance rénale ayant été décrits sous IgIV.

Les EP ou les IgIV sont indiqués dans les crises myasthéniques (Gadjos et al, 2008), qu’il s’agisse de formes bulbares ou respiratoires, mais également dans toutes les aggravations motrices datant classiquement de moins de 4 semaines et résistantes à l’augmentation des anticholinestérasiques. Ils ont été également proposés en préparation à la thymectomie (surtout si associé au thymome). Ils permettent généralement de passer un cap, mais les effets de rebond ne sont pas exceptionnels en particulier en cas d’EP, et l’instauration parallèle d’un traitement immunorégulateur (corticoïdes ou immunosuppresseurs) à long terme est le plus souvent indiquée.

L’efficacité des IgIV et des EP n’a pas été démontrée dans les formes chroniques, que ce soit en traitement de fond ou pour épargner une éventuelle corticothérapie.

Dans les formes oculaires pures, ces traitements sont rarement utilisés ; aucun travail n’ayant étudié leur efficacité. (Voir annexe VIII)
2.4. **Thymectomie**

2.4.1. **Indications de la thymectomie**

1. En cas de Myasthénie oculaire : la place de la thymectomie n’est pas clairement élucidée ;
 - Certains auteurs la proposent systématiquement afin d’éviter une évolution vers une formes généralisée [131] (qui surviendrait dans environ 50% des cas)
 - Pour d’autres, elle doit être proposée aux formes associées à un thymome ou résistante au traitement.

2. En cas de myasthénie séronégative et notamment lors de la présence d’AC anti-Musk, la majorité des auteurs s’accorde pour dire qu’elle est inutile. [132]

3. En cas d’absence de lésion thymique, opinions divergentes car résultats contrastés ; L’orientation générale est de conseiller la résection vestigiale
 ÿ Dans la M.G. à début précoce (sujet de moins de 40 ans)
 À évolution rapide
 Généralisée
 Non compliquée
 ÿ Dans la M.G. ne répondant pas au traitement médical (immuno-suppresseurs)
 ÿ Dans un délai de 1 an (au maximum 2 à 3) suivant le début de la M.G.

4. En cas d’hyperplasie thymique : indication formelle.

5. En cas de thymome (15 % des myasthéniques, souvent après 40 ans), l’indication opératoire est impérative (par sternotomie) car le pronostic est plus le fait de la maladie néoplasique que de la myasthénie qui peut lui être associée.
Les arguments actuellement les plus forts en faveur de cette option thérapeutique sont une forme généralisée récente, des anticorps anti-RACH positifs, et un âge compris entre 9 et 50 ans [133].

Il n’existe pas de consensus concernant :
- L’âge limite de la thymectomie
- La myasthénie oculaire
- Le stade de la maladie (sévérité moyenne à importante)
- Le type de geste chirurgical

2.4.2. Principe de résection

Quelle que soit la technique utilisée, il est généralement admis que la thymectomie pour myasthénie doit être complète : L'exérèse doit intéresser la totalité de la glande thymique ainsi que la graisse cervicomédiastinale, afin qu'elle soit la plus complète possible et pour obtenir une rémission complète.

L’évolution est d’autant plus favorable que la résection est complète [134,135]

Une étude autopsique détaillée a permis d’identifier la présence de tissu thymique ectopique dans des régions qui ne sont pas accessibles par sternotomie médiane (comme la graisse sous-carinaire et rétrocarinaire).

Bien qu’il semble logique d’emporter le plus possible de tissu médiastinal afin d’éviter de laisser du thymus ectopique (Iconographie n°1), il n’a jamais été formellement prouvé que ces vestiges jouent un rôle clinique. De plus, même la chirurgie la plus radicale n’offre pas un taux de rémission supérieur à 40%.

Plusieurs cas de persistance de la symptomatologie du fait d’une résection incomplète ont été rapportés avec une amélioration significative après réopérations. [136,137]
Quelle que soit la technique chirurgicale, le chirurgien doit être attentif à préserver les deux nerfs phréniques. En effet, il existe, chez les malades myasthéniques, une hypoventilation alvéolaire [138]. Une lésion des nerfs phréniques aggraverait les troubles respiratoires chez ces malades. Selon Salati et al, cette complication surviendrait dans environ 7% des chirurgies du thymus [139].

En cas de thymome :

Le traitement de référence est la résection chirurgicale complète en monobloc étendue aux structures adjacentes envahies.

Il faut éviter la rupture capsulaire et la dissémination par biopsie d’une petite tumeur d’emblée résécable.

2.4.3. Voies d’abord :

Une classification modifiée des thymectomies selon la MGFA [140] a été proposée. Elle reprend différentes voies d’abord.

- **T-1 Thymectomie transcervicale** :
 - Basique.
 - Étendue.
 - Étendue avec section partielle du sternum.
 - Étendue vidéo-assistée

- **T-2 Thymectomie vidéo-assistée** :
 - Unilatérale.
 - Bilatérale avec dissection cervicale (VATET).
 - Robot-assistée unilatérale.
 - Robot-assistée bilatérale.
2.4.4. **Prise en charge préopératoire**

La myasthénie est responsable d’une faiblesse des muscles striés, y compris les muscles respiratoires, d’où un risque d’insuffisance respiratoire postopératoire. En cas de paralysie bulbaire, les patients peuvent aussi développer une pneumopathie d’inhalation.

Le traitement médical de la myasthénie a ses propres effets secondaires. Les anti-cholinestérases augmentent le tonus vagal, augmentent la sécrétion salivaire et peuvent provoquer des spasmes laryngés. L’usage prolongé de stéroïdes peuvent entraîner des troubles électrolytiques et des complications infectieuses.

En préopératoire, l’évaluation de l’état préopératoire prend en compte la gravité de la myasthénie, les traitements en cours, les pathologies auto-immune associées.

Evaluation de la gravité de la myasthénie

La gravité de la maladie est évaluée sur la fonction respiratoire.

Score musculaire fonctionnel (maximum 100 points) établi par l’équipe de réanimation de l’hôpital Raymond Poincaré de Garches : prend en compte
l’atteinte des différents groupes musculaires et permet un suivi rapproché.

(Annexe 3)

L’échelle américaine de la Myasthenia Gravis Foundation of America (Annexe 5) : comporte cinq stades de gravité croissante.

La fonction respiratoire est toujours quantifiée avant toute intervention chirurgicale par des épreuves fonctionnelles respiratoires (EFR), combinant au mieux la mesure de la capacité vitale (CV) et celle des pressions maximales inspiratoire (Pi max) et expiratoire (Pe max) afin de confirmer et de quantifier le déficit ventilatoire restrictif d’origine paralytique [141]. Les EFR permettent aussi d’avoir une valeur de référence et entrent dans les scores prédictifs de ventilation mécanique postopératoire (Tableau 9) [142].

En effet, après une étude par analyse discriminante, Leventhal et coll. [143] ont proposé un score basé sur quatre paramètres étudiés en période préopératoire et affecté d'un coefficient allant de 12 à 4, le total maximum étant 34.

Un score supérieur à 10 serait prédictif de VA post-opératoire. Mais d’après Grant ce score est intéressant dans la thymectomie mais pas pour une autre chirurgie.

Tableau 7 : Score de Leventhal ou score de prédilection du risque de complication respiratoire postopératoire.

<table>
<thead>
<tr>
<th>Item</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durée de la maladie > 6 ans</td>
<td>12</td>
</tr>
<tr>
<td>Autre maladie respiratoire associée</td>
<td>10</td>
</tr>
<tr>
<td>Pyridostigmine > 750 mg/j</td>
<td>8</td>
</tr>
<tr>
<td>Capacité vitale < 2.9L</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
</tr>
</tbody>
</table>

Score <10 : extubation postopératoire immédiate.
Score 10-12
Score >12 : ventilation mécanique postopératoire.
Si le patient présente une masse dans le médiastin antérieur (thymome), un risque d’obstruction trachéo-bronchique ou vasculaire est possible à l’induction anesthésique, voire dès l’installation en décubitus dorsal. La réalisation de courbes débit-volume en position assise puis couchée peut aider à évaluer le retentissement ventilatoire de la masse médiastinale [144].

- **Avertir les patients d’une possible ventilation postopératoire**

L’éventualité d’une trachéotomie temporaire afin de conduire le sevrage ventilatoire pour les patients les plus sévèrement atteints et programmés pour une chirurgie majeure (abdominale ou thoracique) sera également exposée en préopératoire.

- **Prémédication préopératoire**

La prémédication préconisée est : l’atropine 0.6 mg IM, diazépam 5 mg per os.

La prémédication doit éviter les médicaments ayant un effet dépresseur respiratoire. Les benzodiazépines, susceptibles d’aggraver une myasthénie, sont contre-indiquées. L’Annexe 3 présente les principaux médicaments pouvant aggraver une myasthénie.

- **Conduite à tenir vis-à-vis des thérapeutiques en cours**

La conduite à tenir vis-à-vis des thérapeutiques en cours et de la prémédication reste sujet à controverse. Il n’existe pas de consensus quant à l’arrêt ou la poursuite du traitement anticholinestérasique avant l’intervention [145].

- Certains considèrent qu’il faut les arrêter du fait du risque d’interférence avec les curares si ceux-ci sont indiqués et l’utilisation de la néostigmine pour effectuer une décurarisation pharmacologique en fin d’intervention.
- D’autres proposent de les poursuivre afin de ne pas rompre un équilibre thérapeutique parfois fragile.
Cette dernière attitude pragmatique est le plus souvent retenue. Elle prend en compte les besoins actuels du patient et également la sévérité de la myasthénie.

Pour les formes les plus graves bénéficiant d’un traitement immunosuppresseur, celui-ci est poursuivi, en particulier la corticothérapie. De même en cas de contrôle insuffisant des symptômes par le traitement médicamenteux, des séances de plasmaphérèse ou l’administration d’immunoglobulines intraveineuses en préopératoire immédiat peuvent être bénéfiques [146]

Les autres maladies auto-immunes associées à la myasthénie peuvent avoir des implications anesthésiques propres et sont recherchées.

De même, les troubles hydro-électrolytiques pour les patients traités par corticoïdes au long cours seront dépistés

2.4.5. Anesthésie et myasthénie

En cas de traitement chirurgical programmé, il est préférable d’attendre que l’état clinique du patient soit stabilisé.

Dans tous les cas, il est préférable de surveiller les patients myasthéniques, qui ont eu un traitement chirurgical, en Unité de soins intensifs en postopératoire immédiat.

- Curares dépolarisants : suxaméthonium

Le suxaméthonium (ou succinylcholine) n’est pas contre-indiqué en cas de myasthénie [147,148]. Le suxaméthonium est un agoniste partiel du RnACh, c’est-à-dire qu’il possède une partie des propriétés pharmacologiques de l’agoniste naturel, l’acétylcholine (le suxaméthonium est composé de deux molécules d’acétylcholine disposées bout à bout). Ainsi, la réduction du nombre de RnACh observée dans la myasthénie entraîne une diminution de la puissance du suxaméthonium c’est-à-dire une augmentation des besoins pour observer le même effet. La dose active 95 % (DA95
ou dose entraînant 95 % de dépression de la force musculaire évaluée à l’adducteur du pouce) du suxaméthonium chez le patient myasthéniques est ainsi 2,6 fois plus élevée que chez le sujet normal.

En revanche, les patients myasthéniques présentent un risque accru de bloc neuromusculaire de phase II suite à l’injection itérative de suxaméthonium [149]. Les traitements anticholinestérasiques, s’ils sont poursuivis en préopératoire immédiat, peuvent réduire le métabolisme du suxaméthonium et entraîner un allongement de sa durée d’action [150]. Au total, chez le patient myasthénique il est nécessaire d’augmenter les doses de suxaméthonium. Une dose de 1,5 à 2 mg kg⁻¹ semble suffisante pour l’induction en séquence rapide [151]. Enfin, il faut éviter les réinjections et monitorer la curarisation avant d’administrer un curare non dépolarisant (Si cela est indiqué) afin de s’assurer de l’absence de curarisation prolongée ou bien encore pour détecter un bloc de phase II.

- Curares non dépolarisants,

Quelles que soient leurs classes chimiques et leurs durées d’action, il existe une augmentation significative de la sensibilité à ces produits ainsi qu’un allongement de leur durée d’action, réduisant les besoins de 50 à 75 % Cette diminution est fonction de la gravité de la myasthénie. La mesure du rapport de train de quatre (Td4) à l’adducteur du pouce avant l’administration de curare non dépolarisant permettrait ainsi de prédire la sensibilité de la réponse. En cas de myasthénie, un rapport de Td4 inférieur à 0,9 impliquerait une sensibilité aux curares plus importante par rapport à des patients ayant une valeur supérieure à 0,9 pour lesquels la sensibilité serait la même que pour les sujets non myasthéniques [152]. L’utilisation d’un monitorage de la curarisation est indispensable pour éviter tout surdosage avec pour conséquence une curarisation résiduelle et la nécessité de prolonger la ventilation en
postopératoire. Au total, la titration et l’utilisation systématique du monitorage de la curarisation simplifient grandement l’utilisation des curares non dépolarisants.

Compte tenu de la physiopathologie de la myasthénie, la sensibilité aux curares non dépolarisants est augmentée, correspondant à une réduction des besoins variable selon la gravité et l’évolutivité de la myasthénie [153]. Il est donc indispensable de titrer la réponse clinique (par exemple débuter par 1/10e de la DA95) sous couvert d’un monitorage instrumental de la curarisation. Pour le vécuronium, la DA95 chez le myasthénique est réduite de 45 % [154] à 60 % [155] par rapport à celle du sujet normal. L’atracurium est 1,7 à 1,9 fois plus puissant chez le sujet myasthénique que chez le sujet normal [156].

La sensibilité des patients myasthéniques est également augmentée pour le cisatracurium [157] et le mivacurium [158]. Comme pour la succinylcholine, les anticholinestérasiques peuvent interférer avec le métabolisme du mivacurium et augmenter sa durée d’action.

- **Surveillance instrumentale de la curarisation**

Classiquement, le monitorage de la curarisation doit être réalisé au muscle sourcilier pour l’induction et à l’adducteur du pouce pour la décurarisation. Chez le patient myasthénique, la sensibilité des différents groupes musculaires aux curares peut être modifiée par rapport au sujet sain. Une étude a montré que le monitorage de la curarisation à l’orbiculaire de l’œil peut surestimer le bloc neuromusculaire chez le patient myasthénique [159]. L’atteinte quasi constante des muscles oculaires explique sans doute ce résultat. De plus, la sensibilité des Différents groupes musculaires aux curares est différente en fonction de l’évolution de la maladie. Ainsi, si chez le patient ayant une myasthénie oculaire pure, le monitorage à l’orbiculaire de l’œil surestime le bloc neuromusculaire, ceci n’est plus vérifié chez le patient ayant une myasthénie généralisée [159]. De même, chez un patient atteint de myasthénie
oculaire unilatérale, le monitorage du muscle sourcillier controlatéral n’est pas fiable pour prédire les conditions d’intubation [160]. L’évaluation chez le myasthéniques du rapport de train de quatre (T4) par EMG au niveau des muscles hypothénars de la main avant l’administration de tout myorelaxant permettrait de prédire la sensibilité aux curares non dépolarisants. Ainsi, le rapport de T4 avant curarisation est inférieur à 0,9, la sensibilité aux curares est plus importante et les doses injectées doivent être Moindres par rapport à des sujets myasthéniques ayant un rapport supérieur à 0,9 [161].

Au total, l’évaluation de la gravité de la maladie selon les classifications de la Myasthenia Gravis Foundation of America, couplée à celle de la valeur du rapport de T4 avant l’induction à l’adducteur du pouce (inférieur ou supérieur à 0,9) permettrait de prédire la sensibilité aux curares non dépolarisants.

2.4.6. Techniques chirurgicales

Thymectomie transcervicale

Le patient est installé en décubitus dorsal, en hyper extension cervicale. L’incision horizontale est pratiquée deux travers de doigt au-dessus du manubrium sternal et dépasse si nécessaire le bord antérieur des muscles sternocléidomastoïdiens latéralement.

Après incision du muscle platysma, le plan dermo-hypodermique superficiel (en haut et en bas) est décollé puis la ligne blanche médiane ouverte (entre les muscles sous-hyoïdiens qui sont écartés latéralement) pour dégager la trachée, depuis le cartilage thyroïde jusqu’au manubrium sternal. A l’aide d’un écarteur de Farabeuf qui s’appuie en bas sur le manubrium sternal, on expose la face antérieure de la trachée au niveau de sa pénétration médiastinale. L’extrémité supérieure des reliquats thymiques est située sous le pôle inférieur de la thyroïde vers le médiastin, dans le

Le bord supérieur des coulées thymiques est souvent visibles mais il faut parfois aller les chercher profondément « à l’aveugle » dans le médiastin, en prenant garde de ne pas blesser le tronc artériel brachio-céphalique ou le tronc veineux céphalo-rachidienne. A l’aide d’une pince de Kelly ou Christophe, leur dissection se fait par traction progressive et douce, par des mouvements d’asynclitisme à partir de leur extrémité cervicale [162]. L’environnement cellulo-graisseux est progressivement refoulé et les différents vaisseaux sont progressivement électrocoagulés ou liés au contact, en particulier un éventuel pédicule inférieur qui pourrait, après s’être rétracté, saigner dans le médiastin. Il faut aussi régulièrement contrôler que le nerf récurrent homolatéral, souvent proche dans sa partie cervicale basse, n’est pas attiré lors de ces manœuvres s. Il est nécessaire d’en réaliser une exérèse complète afin de ne pas laisser en place dans le médiastin un éventuel adénome.

Après vérification de l’hémostase, renforcée éventuellement par une manœuvre de Valsalva, l’hyper extension cervicale est supprimée. Le drainage de la loge thymique n’est pas nécessaire. Les muscles sous-hyoïdiens sont rapprochés par un surjet de Vicryl 3/0. Le muscle platysma est fermé par un surjet de fil lentement résorbable 5/0 sans tension. La peau est refermée par des agrafes de Michel, par un surjet intradermique de fil monofilament résorbable ou de la colle biologique.

C’est une des techniques les moins invasives ayant un léger coût esthétique.
Par ailleurs, la dissection en pratique n’est pas toujours aussi complète que celle décrite. [163]. Et elle ne permet pas une résection des feuillets médiastinaux pleuraux.

Cette technique a pour risque la lésion des nerfs récurrents du fait de la dissection cervicale.

- **Thymectomie transcervicale étendue avec section partielle du sternum**

![Iconographie 2](image)

Cervicomanubriotomie. Exposition obtenue après écartement sternal.
La seule contre-indication relative à cette technique est la présence d’une trachéotomie pour éviter le risque septique. Un antécédent de sternotomie n’est pas une contre-indication absolue. C’est une voie d’abord inadaptée pour toute pathologie nécessitant un accès médiastinal plus large.

Ses inconvénients découlent de ses avantages. Il s’agit d’une voie d’abord qui laisse peu de séquelles fonctionnelles, notamment respiratoires. Cet avantage est en partie un de ses inconvénients car le champ d'action ouvert par cette voie est limité à la région cervicomédiastinale avec un accès latéral limité.

Les complications sont exceptionnelles : la pseudarthrose sternale est théoriquement évitée par la section incomplète du sternum et l’ostéite est rare.

- **Thymectomie trans-sternale**

La référence pour la majorité des équipes reste la sternotomie (totale ou partielle) médiane, offrant une exposition à l’ensemble du médiastin, mais avec un lourd tribut esthétique

Le malade est en décubitus dorsal, avec un coussin sous les omoplates de manière à dégager la fourchette sternale au prix d’une extension modérée du cou

L’incision cutanée médiane commence 1 à 2 cm sous la fourchette sternale (afin de ne pas apparaître à la base du cou) et descend en regard ou 1 cm sous l’appendice xiphoïde. En cas de trachéotomie, une incision plus courte vers le haut, avec une branche horizontale en T, diminue le risque d'infection. Une incision sous les seins avec décollement rétro mammaire évite, chez la femme, la disgrâce de la cicatrice verticale. Après section du plan fibro-musculaire et du périoste, on effondre, à la base du cou, l’aponévrose cervicale superficielle pour vérifier la liberté de l'espace d'Allan Burns qui peut être comblé par un thymome. L'ostéotomie sternale se fait au ciseau frappé de Lebsche ou à la scie oscillante. Si on ne possède pas les instruments.
Précédents, on peut se servir avec précaution, sous la protection d'une cuillère glissée derrière le sternum, d'un ciseau droit à frapper.

L'ostéotomie est refermée par des points transfixiants de fil d'acier.

Elle permet une résection étendue du thymus, de la graisse thymique médiastinale, des feuilles pleuraux médiastinaux si nécessaire, et de la graisse de la fenêtre aorto-pulmonaire et une dissection jusqu'au pôle inférieur de la thyroïde.

Par contre, elle n’expose pas à une lésion récurrentielle.

Il est démontré que la technique de sternotomie standard permet une exérèse de deux fois plus de tissu thymique que la technique transcervicale [164]

La thymectomie trans-sternale expose à des séquelles esthétiques sans permettre une résection du tissu graisseux cervical ; avec risque d’atteinte des vaisseaux mammaires internes, alors inutilisables pour un pontage cardiaque

Cette technique peut entrainer une altération de la fonction respiratoire [165]

Les deux principales complications de la sternotomie, pouvant conduire à une médiastinite, sont la pseudarthrose et l’ostéite sternale

- **Thymectomie trans-sternale et transcervicale :**

 Appelée aussi thymectomie cervico-médiastinale étendue, elle associe les modalités de la sternotomie totale et de la cervicotomie.
Voies d'abord chirurgicales antérieures du thorax. J. Jougon (Praticien hospitalier) *, F. Delcambre (Praticien hospitalier), J.-F. Velly (Professeur des Universités, praticien hospitalier)
Le groupe du Columbia-Presbyterian Medical Center a préconisé une thymectomie « maximale » qui associe d’une part sternotomie médiane avec incision cervicale permettant une thymectomie en bloc et d’autre part une résection médiastinale antérieure qui inclut la plèvre médiastinale à partir du défilé cervico-thoracique jusqu’au diaphragme, la graisse péricardique et toute la graisse médiastinale. Cependant, en dépit de cette approche radicale, les résultats en termes d’amélioration clinique ne semblaient pas être significativement différents par rapport à la sternotomie seul ou aux approches transcervicales.

Cette technique permet une résection de la totalité de la glande thymique, de la graisse médiastinale et de la graisse cervicale avec risque de lésion des nerfs récurrents lors de la dissection cervicale.

- **Thymectomie vidéo assistée**

 Thoracoscopie gauche (video assisted thoracoscopic surgery).

 Thoracoscopie bilatérale :

 Cette procédure se passe sous anesthésie générale et nécessite une intubation sélective de manière à exclure le poumon permettant aux chirurgiens thoraciques de travailler en toute liberté dans une cavité pleurale libre, disposant ainsi d’un espace de travail suffisant [166].

 Elle repose sur le principe de trois trocarts en triangulation, le trocart inférieur étant utilisé pour l’optique et le trocart latéral utilisé pour introduire les instruments endoscopiques spécifiques, leur position pouvant être intervertie à tout moment. Le bras pourra être suspendu pour dégager le creux axillaire ou le long du corps en position de thoracotomie postérolatérale.

 La procédure chirurgicale se fait uniquement sur l’écran de contrôle placé en face du chirurgien. Il est recommandé d’avoir un deuxième écran de contrôle de
l’autre côté de la table pour l’assistant selon les habitudes de chacun et les chirurgiens et aides peuvent être du même côté, deux orifices sont seulement nécessaires.

Les patients ayant eu une thymectomie par voie thoracoscopique ont des besoins anesthésiques significativement moindres et des durées d’hospitalisation plus courtes que les patients qui ont subi une thymectomie transternale.

Par ailleurs la TVA a un meilleur résultat esthétique, surtout chez les femmes jeunes.

La fonction pulmonaire est significativement mieux préservée dans la période qui suit immédiatement la TVA en comparaison avec une sternotomie médiane [165].

Par rapport à l’approche conventionnelle par cervicotomie, la TVA offre une meilleure visualisation et permet une manipulation plus aisée des instruments.

La dissection de la graisse péri-thymique droite et du tissu graisseux cervical reste difficile avec cette technique.

Thymectomie robot-assistée : Le robot Da Vinci II®

Un outil « robotique » s’est développé au cours des 10 dernières années, représenté par le télémanipulateur da Vinci® distribué par l’entreprise Intuitive Surgical (Sunnyvale, États-Unis). Il s’agit d’une plateforme chirurgicale autonome équipée de micro-instruments chirurgicaux manipulés par des bras articulés et pilotés à distance par le chirurgien à l’aide d’une console équipée d’une vision 3D haute définition. Cet outil original a permis le développement des abords mini-invasifs dans certaines spécialités, [167].

Une étude rétrospective de cohorte allemande a été publiée par le Dr Rückert en mars 2011 : 74 cas de thoracoscopies effectuées par le robot et 79 thymectomies par thoracoscopie ont été pratiquées entre 1994 et 2006 : après un suivi de 42 mois, le taux de rémission est de 20 % dans la sternotomie contre 40 % dans la thymectomie thoracoscopique par le robot.
Le robot travaille avec une précision supérieure à la main humaine,
Il dispose d'un filtre pour les tremblements des mains,
Le mouvement peut être démultiplié par 10 (1cm égal un mouvement de 1mm),
Chaque instrument à 7 degrés de liberté de mouvement,
Vision en 3 dimensions agrandie.
Il nécessite que de petites incisions : 3 orifices (5 cm chacun)
Ce système ne peut ni être programmé, ni prendre des décisions de manière autonome

Le chirurgien opère depuis une console.

Les 2 groupes sont comparables en âge, sexe, score de myasthénie, etc....

- L'amélioration à un an a été identique pour les deux types d'opération,
- Le séjour en réanimation a été également identique,
- Aucune complication avec le robot n'a été constatée et très peu avec la sternotomie,
- La taille de la pièce était équivalente (elle n'était pas mieux enlevée avec la sternotomie),
- La durée d'intervention est encore un peu supérieure avec le robot (1h et demi maximum contre 1h, mais cela dépend de l'entrainement du chirurgien),
- La durée de drainage a été de 3 jours pour la sternotomie contre 1 jour pour l'opération avec le robot,
- La durée d'hospitalisation a été de 9 jours pour la sternotomie contre 5 jours pour le robot,
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

On a constaté moins de douleur, moins de séquelles esthétiques, peu de perte hématique avec le robot,

La reprise du travail a été plus rapide après l'opération avec le robot : 1 à 2 semaines contre 1 à 2 mois pour la sternotomie.

Les avantages du robot par rapport à la sternotomie :

permettraient également une diminution des crises myasténiques postopératoires par diminution de la réponse immune induite par le stress chirurgical [168].

La technique robot assistée permettait une réduction significative de la durée d’hospitalisation, de la douleur à J1 ainsi que la durée de drainage, coût esthétique minime (trois cicatrices) de 15 mm, cachées sous le creux axillaire et le sillon sous mammaire), diminution du risque d’atélectasie et de pneumonies postopératoires, diminution du risque de lésions des vaisseaux mammaires internes.

Elle offre également des avantages supplémentaires à la thoracoscopie :

une vision en 3 dimensions,
7 degrés de liberté,
des mouvements beaucoup plus précis que la main humaine,
une dissection dans l’espace cervical tout à fait réalisable,
permis une dissection plus complète que la vidéothoracoscopie,
une intervention en position assise.

Inconvénients

Le principal problème au développement de l'utilisation du robot Da Vinci réside dans son coût d'achat et son coût d'utilisation, mais très probablement contrebalancé par les durées d’hospitalisation moins longues (en moyenne 5 jours de moins qu’une sternotomie) [164].
L’absence de retour de force

Dissection difficile chez les malades obèses ou ayant bénéficié d’une longue corticothérapie préopératoire.

Le robot n’est pas utilisé en cas de thymome de plus de 2 cm ; ces thymomes sont pour le moment réalisés par une chirurgie classique.
Iconographie 3 :

Thymectomie par voie gauche. Utilisation de 3 trocarts ou 4 trocarts (rajout d’un trocart assistant si besoin) dans les cas complexes [169]
Les bras du robot sont à distance de l’assistant lui permettant d’aider le chirurgien dans de très bonnes conditions. L’anesthésiste a un accès restreint au patient. Ceci impose un contrôle parfait des différents paramètres ventilatoires et hémodynamiques à distance.
Iconographie 5 :
Schéma montrant la disposition d'une salle opératoire dédiée à la chirurgie robotique

2.4.7. Résultats

Période postopératoire : Sevrage à la ventilation

En période postopératoire il faut anticiper une prise en charge en unité de soins continus. Actuellement, l’extubation précoce est le plus souvent possible à condition que l’évaluation préopératoire et l’anesthésie aient été bien conduites. L’utilisation de curares non dépolarisants majorerait le risque de complications respiratoires.

Les critères d’extubation des patients myasthénique sont les mêmes que pour le sujet sain. Plusieurs scores prédictifs de ventilation mécanique postopératoire ont été proposés mais ils n’ont qu’une valeur indicative [170, 171, 172, 173].

La faiblesse musculaire postopératoire pose des problèmes diagnostiques. Elle peut être liée à un effet résiduel des agents anesthésiques (agent halogéné et curare notamment), à une crise myasthénique ou à une crise cholinergique.

L’attitude à adopter vis-à-vis de la reprise immédiate ou non des anticholinestérasiques n’est pas tranchée. La reprise différée permettrait d’éliminer le risque de crise cholinergique et de simplifier le diagnostic étiologique d’une faiblesse musculaire postopératoire. Dans tous les cas, leur réintroduction est titrée, en débutant le plus souvent à la moitié de la dose en préopératoire. En cas de détresse respiratoire, la ventilation non invasive semble une alternative intéressante à l’intubation [174].

Dans notre série, tous les patients ont séjourné en réanimation au moins 24 heures, maximum 3 jours (à cause d’une crise myasthénique)

Evaluation de la rémission postopératoire

La rémission postopératoire peut être appréciée par deux classifications :

- Classification de De Filippi (Annexe 6), ou
- Classification Myasthenia Gravis Foundation of America (MGFA) postopératoire (Annexe 7).
Dans notre étude, la classification MGFA postopératoire a été adoptée.

Résultats à long terme

<table>
<thead>
<tr>
<th>Technique chirurgicale</th>
<th>résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymectomie Trans cervicale</td>
<td>le taux de rémission complète postopératoire, à 5 ans varie dans les séries de 24 à 44 % [175, 176, 177]</td>
</tr>
<tr>
<td>Thymectomie trans sternale</td>
<td>Le taux de rémission complète à 5 ans varie dans la littérature entre 30-44% [178].</td>
</tr>
<tr>
<td>Thymectomie trans- sternale et trans cervicale</td>
<td>Le taux de rémissions complètes est de 50% à cinq ans. [137]</td>
</tr>
<tr>
<td>Thymectomie vidéo assistée</td>
<td>les taux de rémissions cliniques à 5 ans dans la littérature varient entre 13 et 51% [178]</td>
</tr>
<tr>
<td>Thymectomie robot- assistée</td>
<td>le taux de rémission est de 20% dans la sternotomie contre 40% dans la thymectomie thoracoscopique par le robot</td>
</tr>
</tbody>
</table>

2.4.8. Résultats fonctionnelle de la thymectomie

La thymectomie n’entraîne que très inconstamment la disparition de la myasthénie, qui doit la plupart du temps être traitée médicalement.

Environ 30% des patients qui, sans thymome, subissent une thymectomie connaissent une rémission totale et 50% connaissent une amélioration.

Cette amélioration n’apparaît pas immédiatement après la thymectomie mais met plusieurs mois voire plusieurs années pour atteindre son effet maximal.

Le taux de rémission 5 ans après chirurgie varie dans la littérature de 13 à 51 % [179].
Quoiqu’il en soit, la thymectomie elle-même est rarement responsable d’une aggravation, sur le long terme, de la myasthénie.

Même un thymome invasif n’est pas toujours détecté lors des examens par imagerie et ne l’est que lors de la thymectomie elle-même. Ceci est un bon argument en faveur de la thymectomie, par rapport aux traitements immunosupresseurs, pour les patients jeunes et en bonne santé.

De plus la possibilité d’une rémission complète après la thymectomie sans avoir besoin de poursuivre de traitement, par comparaison à une rémission où la poursuite du traitement est nécessaire, est un autre argument en faveur de la thymectomie.

Les rares études comparatives entre thymectomie et traitement médical sont rétrospectives et la plupart montrent des résultats en faveur de la thymectomie [180]. Celle- ci semble en effet être associée à un taux plus élevé de rémissions (27% contre6%), d’amélioration clinique (26%contre 13%) et un taux moindre de décès lié à la maladie (11%contre 34%) [181]. Cependant, ces études sont à mettre en balance avec les résultats publiés par Grob et al montrant que si la thymectomie permettait un meilleur taux de rémission dans les années 50, elle n’apporte en revanche aucun bénéfice clinique aujourd’hui du fait du développement considérable des traitements médicaux et notamment de la généralisation de l’utilisation des corticoïdes et des immunosupresseurs [182]

La thymectomie améliore l’évolution de la maladie (le mécanisme physiopathologique exact n’est pas encore connu) et garde une place centrale en complément des traitements médicamenteux standards (anticholinestérasiques, immunoglobulines, immunosupresseurs). Une méta- analyse portant sur 28 études contrôlées [183] a conclu que les malades thymectomisés avaient deux fois plus de chance de ne plus prendre de médicaments, 1.6 fois plus de chance d’être
asymptomatiques et 1.7 fois plus de chance de s’améliorer après l’intervention. (Pas de différence entre séronégative et séropositive. Recommandation niveau B)

Dans un article publié en décembre 2014 [184], des chercheurs canadiens ont construit un score original (propensity score) destiné à contribuer au débat. Sur 395 patients myasthéniques suivis entre 2000 et 2013 au CHU de Toronto, 46% ont été thymectomisés. La comparaison de ce score dans les deux groupes (traité par thymectomie ou non traité) fait apparaître une propension significative à l’amélioration dans le groupe traité. Pour autant, le chiffre reste modeste dans le groupe traité (autour de 20%). L’amélioration s’est faite vers une rémission complète ou, plus modestement, vers une symptomatologie minimale. On notera enfin des limitations importantes dans cette étude comme le manque d’information sur le taux d’auto-anticorps (lesquels n’étaient disponibles que dans 45% des cas). [184]

Certaines études suggèrent que la thymectomie est utile chez les personnes atteintes de myasthénie qui n’ont pas de thymome (myasthénie non thymomateuse). [185, 186, 187]

Une récente étude a montré que les myasthéniques avec ou sans thymome ayant subi une thymectomie ont une incidence plus élevée de rémission complète stable et de rémission pharmacologique par rapport aux myasthéniques n’ayant pas subi de thymectomie. [188]

Les incertitudes qui empêchent de dégager un accord consensuel sur son intérêt et sa place dans la prise en charge thérapeutique ont été tranchées par un essai clinique contrôlé randomisé ECR récent.

Cet essai a comparé les résultats cliniques d’une thymectomie trans-sternale associée à une corticothérapie, avec une corticothérapie seule sur une période de 3 ans. Cette étude [189], la Thymectomy Trial in Non- Thymomatous Myasthenia Gravis
Patients Receiving Prednisone (MGTX), était un essai randomisé et contrôlé multicentrique en simple aveugle (évaluateur), chez 126 patients de 18 à 65 ans, suivis entre 2006 à 2012.

Les critères principaux d’évaluation étaient le score QMG (Annexe 9) et la dose globale de prednisolone requise sur une période de trois ans.

Les chercheurs ont constaté qu’un traitement combiné associant chirurgie et prednisone a permis une régression globale de la fatigabilité musculaire globale supérieure à celle observée avec la prednisone seule. Après 36 mois d’un traitement par la prednisone, chaque groupe de patients avaient amélioré leur score QMG. Le score des patients qui avaient bénéficié de l’association thymectomie-prednisone était supérieur de 2,84 points à celui des patients ayant reçu la prednisone seule.

L’équipe de Buffalo a également constaté que les patients ayant subi la chirurgie du thymus avaient pu réduire la posologie du traitement par prednisone comparativement aux patients ne recevant que la prednisone, soit 44 mg contre 60 mg quotidiennement. Globalement, les premiers nécessitaient moins d’immunosuppresseurs supplémentaires. Finalement, le recours à la chirurgie a réduit les effets indésirables attribuables à la prednisone seule (93 patients) par rapport à l’association (48 patients), ce qui s’est traduit également par une réduction des hospitalisations.

Dans notre étude, on a noté une progression statistiquement significative selon le modèle GLM des moyennes marginales des status MGFA ce qui témoignerait d’un effet globalement positif de la thymectomie.
2.4.9. Facteurs influençant les résultats de la thymectomie : Facteurs pronostiques

Les facteurs pronostiques sont difficiles à définir compte tenu de la rareté de la pathologie, de la multiplicité des présentations cliniques, la labilité et la longueur d’évolution qui nécessite un long recul.

Divers facteurs pronostiques ont été proposés [190, 191, 192].

Pour certains, l’évolution est d’autant meilleure :

- Que la résection est pratiquée tôt
- Que le malade est de sexe féminin [193, 194, 195, 196]
- Que la myasthénie est associée à une dysthyroidie
- Que le patient est jeune [197, 198, 199] (moins de 40 ans pour certain, 50 ans pour d’autres [200])
- Que l’état préopératoire est grave

- **Age :**

 L’âge du patient au moment du diagnostic est un facteur pronostique déjà évoqué par certains auteurs [197, 198].

 Budde et al. [163] ont montré une forte corrélation entre l'âge et le résultat, le taux de réponse de 80 % (57 parmi 70) pour les 50 ans ou moins contre 57% (12 parmi 22) pour les plus de 50 ans.

 Pour certains auteurs [201, 202], un âge > 60 ans est parmi les facteurs prédictifs de survenue de crise myasthéniques après thymectomie.

 Mais dans notre étude l’évolution était identiquement favorable, tout âge confondu.

 L’âge ne modifie pas le pronostic : on ne retrouve pas de différence de survenue de rémission entre les patients jeune et âgés. Cependant, cette différence n'est pas
statistiquement significative peut être en raison de la petite taille de l'échantillon (p=0,658).

Sexe :

Dans la littérature, les patients de sexe masculin tendent à avoir une progression rapide de leur maladie, un taux de mortalité élevé, et un taux de rémission moindre que celui des patients de sexe féminin [196].

Dans les études [193, 194, 195,203], les patients de sexe féminin ont évoluté favorablement après thymectomie.

En général, les patients de sexe féminin ont tendance à répondre à la thymectomie mieux que leurs homologues masculins [198,204]

Dans la présente série, le sexe ne semble pas avoir d’influence sur la survenue de MM/ R ; ce qui rejoint l’étude de Jason M Buddle [200].

Forme clinique de la myasthénie

Certains auteurs ont rapporté un taux de 60%de rémission dans la myasthénie oculaire et recommande donc la thymectomie [204,205].

En se basant sur l'expérience collective des séries [206,207], la thymectomie doit être recommandée chez tous les patients avec une atteinte oculaire, vu que deux tiers d'entre eux développeront une myasthénie généralisée.

Stade MGFA

Les signes bulbares ont été reportés comme étant un facteur de risque indépendant de survenue de crise myasthénique après thymectomie. [208, 209, 210,211]

D'autres études ont été incapables de montrer une différence significative entre les différents stades préopératoires. [212]

L'âge >60 ans, Osserman>IIb et une histoire de crises myasthéniques sont des facteurs prédictifs de survenue de crise myasthéniques après thymectomie.
Traitements médicaux reçus

En analyse multivariée, l’absence de corticoïdes dans le traitement médical pré-opératoire était statistiquement liée à la prédiction de survenue de rémission complète stable chez les patients avec thymome ($p<0.006$) et sans thymome ($p<0.007$) [214].

L’absence de corticoïdes dans le traitement préopératoire des patients myasthéniques était un facteur prédictif indépendant de la survenue de rémission complète stable dans les deux groupes d’étude ; ce qui est similaire aux observations d’autres auteurs [215, 216].

La prescription d’anticholinestérasique seul en préopératoire est un bon facteur pronostique [217].

Les patients qui étaient sous immunosuppresseurs en préopératoire se sont aggravés significativement après thymectomie en comparaison aux patients sous anticholinestérasiques seuls ($P<0.01$) [218].

Dans notre série, l’étude de l’évolution en fonction du traitement médical administré a permis de constater une évolution vers l’amélioration aussi bien chez les patients sous immunosuppresseurs que chez ceux sans traitement immunosuppresseurs ; ce qui est tout à fait différent de la majorité des études publiées précédemment.

Type histologique du thymus

Il est généralement admis que le thymome est un élément de mauvais pronostic influençant l’évolution de la maladie après chirurgie et ceux à cause de :

- la sévérité des symptômes neurologique, la faible réponse aux traitements médicaux de 1ère intention [219]
- mortalité plus élevée [220]
- l’évolution qui est plus péjorative que celle des autres types histologiques, notamment l’hyperplasie [221, 222, 223, 224].

En réalité ce pessimisme est tempéré par d’autres séries de myasthéniques dont l’évolution a été satisfaisante tant au point de vue vital que fonctionnel avec 49 % de rémission ou d’amélioration et 30% de décès. [228]

Dans la série de Lei Yu [229] la probabilité de survenue de rémission était de 37.5% chez les myasthéniques sans thymome et de 28.3% chez ceux avec thymome. 40 mois après la thymectomie, aucune différence significative n’a été notée entre les deux groupes. [229]

Dans notre série d’étude, nous avons constaté une amélioration des symptômes, sans aucune aggravation ou décès. Résultats satisfaisant et qui concorde avec les affirmations des auteurs sur l’effet bénéfique de la thymectomie chez les patients myasthéniques avec un thymome.

Selon une étude* réalisée au sein de notre service en 2013, Le taux de rémission à 10 ans est significativement inférieur dans le groupe myasthénie associée au thymome par rapport aux myasthéniques sans thymome.

Donc le thymome constitue un facteur de mauvais pronostic sur la survenue de MM/R après la thymectomie [114].

La thymectomie chez les myasthéniques sans thymome décelable est d’une toute autre difficulté, car les opinions sur ces effets sont loin d’être concordant.

Pour certains auteurs [230, 231, 232], la thymectomie chez les patients myasthéniques sans thymome semble avoir des résultats favorables et induit la rémission chez 50 % des patients mais cet effet bénéfique est non encore établi exclusivement.

Chez nos patients thymectomisés sans thymome (42% des malades), l’évolution a été favorable pour la majorité avec la rémission chez 50 % des cas au bout de 18
mois. Ce qui concorde avec les données de la littérature qui affirment l’effet favorable de la thymectomie même en absence de thymome.

Les patient avec thymome ont répondu à la thymectomie aussi bien que les myasthéniques sans thymome, ceci est en accord avec les constatations de Olanow et ses collègues [233].

Nos résultats peuvent être biaisés par le fait que la durée d’évolution des patients avec thymome est plus courte par rapport aux patients sans thymome.

Dans une étude réalisée au sein du même service en 2013 [114], il a été constaté que le taux de RCS est inférieur chez les myasthéniques avec thymome.

\[\text{Délai pré-opératoire} \]

Comme observé par d'autres, [234], nous avons également constaté que la durée de la maladie n’est pas corrélée de manière significative avec le résultat.

Les patients avec une durée d’évolution de leur myasthénie > 24 mois avaient une probabilité de survenue de rémission similaire à ceux dont l’évolution est < 24 mois.

Pour certains auteurs [235], la durée des symptômes semble être le principal déterminant des résultats.

\[\text{Autres facteurs pronostiques} \]

- La voie d’abord

\[\text{VATS vs. Voie trans- sternale :} \]

 Les patients qui ont subi une thymectomie vidéo assistée avaient une meilleure réponse clinique par rapport à l’approche trans- sternale, mais la différence n'a pas été statistiquement significative. Beaucoup d'autres études ont également rapporté des résultats similaires. [236]
Le meilleur taux de réponse dans le groupe VATS peut être due à l’exclusion des patients atteints de thymome et/ou souffrant de complications respiratoires graves.

Selon la littérature [237, 238, 239, 240], il n'y a pas de différence statistiquement significative en termes de rémission et de taux de récurrence entre la sternotomie médiane et la thoracoscopie vidéo-assistée [237].

Ø VATET vs. Voie trans-sternale

La VATET n'a pas été significativement corrélée avec une faible probabilité d'obtention de rémission complète stable par rapport à l'approche classique transsternal (p = 0.1090) [241].

• Le poids de la pièce opératoire :

Des résultats significativement péjoratifs ont été retrouvés chez les patients dont le poids de la glande thymique réséquée était > 30 g, indépendamment de la pathologie. [242],

Mlle. ABOUTALEB Nezha 168
Les facteurs pronostiques influençant les résultats de la chirurgie, rapportés par la littérature en cas de myasthénie non thymomateuse. [243]

<table>
<thead>
<tr>
<th>Facteurs étudiés</th>
<th>Résultats prédits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeune âge (<35 ans)</td>
<td>bon</td>
</tr>
<tr>
<td>Durée d’évolution avant la chirurgie < 2 ans</td>
<td>Bon</td>
</tr>
<tr>
<td>Sévérité des symptômes : les formes modérées ont répondues plus rapidement que les formes sévères, mais l’amélioration semble sans lien avec la gravité d’après certaines séries</td>
<td>bon</td>
</tr>
<tr>
<td>Age > 60 ans</td>
<td>faible</td>
</tr>
<tr>
<td>Sexe : Les hommes ont la même probabilité d’amélioration que les femmes, mais certaines séries rapportent de meilleurs résultats chez les femmes</td>
<td>Controversé</td>
</tr>
<tr>
<td>Progression rapide de la sévérité des symptômes</td>
<td>faible</td>
</tr>
<tr>
<td>Exérèse complète du thymome et de la graisse thymique</td>
<td>Bon</td>
</tr>
<tr>
<td>Présence de tissu thymique ectopique résiduel</td>
<td>faible</td>
</tr>
<tr>
<td>thymectomie par sternotomie totale.</td>
<td>Bon</td>
</tr>
<tr>
<td>Myasthénie instable avant la chirurgie</td>
<td>faible</td>
</tr>
<tr>
<td>Amélioration < 3 ans post- thymectomie</td>
<td>faible</td>
</tr>
<tr>
<td>Notion de thymectomie antérieure</td>
<td>faible</td>
</tr>
<tr>
<td>Prednisone de novo</td>
<td>bon</td>
</tr>
<tr>
<td>Doses élevées de pyridostigmine avant l'opération</td>
<td>Faible</td>
</tr>
<tr>
<td>Hyperplasie thymique</td>
<td>Bon</td>
</tr>
<tr>
<td>Atrophie thymique</td>
<td>Faible</td>
</tr>
<tr>
<td>Normalisation du rapport cellules T CD4-/CD8-</td>
<td>Bon</td>
</tr>
<tr>
<td>Normalisation du rapport cellules T CD4+/CD8</td>
<td>Bon</td>
</tr>
<tr>
<td>Diminution des titres d'anticorps anti- AChR</td>
<td>Bon</td>
</tr>
</tbody>
</table>

Tableau 8
3. **Traitement orthoptique**

La paralysie oculomotrice engendrée par la faiblesse des muscles oculomoteurs peut être en partie compensée par le traitement orthoptique.

Contrairement à la plupart des paralysies, celles-ci ne peuvent être corrigées chirurgicalement du fait du caractère variable de la myasthénie entraînant une fluctuation de la déviation.

Le patient se plaignant de voir double peut être satisfait par le port de prismes dont le but est de supprimer la diplopie. La correction prismatique corrige la déviation et permet l’usage de la vision binoculaire, d’où la disparition de la diplopie, offrant ainsi un meilleur confort visuel au patient.

4. **Avancées thérapeutiques**

4.1. **Vaccin**

Il s’agit d’un vaccin non pas pour prévenir la MG mais bien pour la soigner et peut-être même la guérir.

J. Edwin Blalock, Professeur en médecine à l’Université d’Alabama a mis au point un vaccin thérapeutique se basant sur l’utilisation de peptides complémentaires – une technique totalement innovante – et émis la théorie qu’il pourrait guérir les maladies auto-immunes.

Le vaccin a fait ses preuves sur des rats de laboratoires et des chiens domestiques atteints de myasthénie avec un taux de guérison chez les chiens vaccinés qui a atteint les 100% mais aucune société pharmaceutique n’est prête à le tester sur l’homme.

Fin 2009, le médicament était prêt à être testé sur l’homme mais il fallait encore réunir les fonds pour financer les essais cliniques et trouver les patients.
Le projet Myasterix a débuté en octobre 2013 et se terminera en 2018. Il permettra de financer les deux premières phases des essais cliniques. Dans un premier temps, 32 patients atteints de myasthénie seront traités. Ils seront 50 en phase 2. Au total, ce sont donc plus de 80 personnes qui seront suivies dans le cadre de cette étude. Elles devraient recevoir 3 injections chacune.

Actuellement, Le vaccin entre en phase I- II, avec les premiers patients injectés en mars 2015 à l'université de Leyde, aux Pays-Bas.

Grâce au statut de médicament orphelin qui permet d’accélérer les procédures, le vaccin pourrait être sur le marché en 2018 si les résultats s’avèrent concluants.

4.2. L’EN101 (ou Monarsen®)

Le traitement de référence dans la myasthénie repose sur les anticholinestérasiques (Mestinon® Mytelase®) lesquels ralentissent la dégradation de l’acétylcholine par l’acétylcholinestérase. Depuis quelques années, et surtout pour les formes rebelles au traitement classique, l’accent est mis sur l’utilisation potentielle de molécules antisens venant bloquer, au niveau des ARN, la production d’acétylcholinestérase.

Dans un article publié en août 2007 sont rapportés les résultats encourageants d’un premier essai bicentrique conduit en ouvert chez 16 patients myasthéniques traités en Israël (Jérusalem) et en Angleterre (Manchester).

Donné oralement pendant 1 mois, en une prise quotidienne de 500 µg/kg, et en substitution aux anticholinestérasiques classiques, l’EN101 (ou Monarsen®) a entraîné une amélioration clinique substantielle (mesurée par l’évolution du score myasthénique) au prix de peu d’effets secondaires (une sécheresse buccale et oculaire a été signalée en début de traitement). Du fait du caractère ouvert de l’essai, les
auteurs n’excluent pas la possibilité d’un effet placebo. Il est donc important de confirmer ces données par des essais contrôlés [244].

4.3. La thérapie cellulaire

La thérapie cellulaire consiste à remplacer des cellules défectueuses ou anormales par des cellules souches. Cette technique consiste à prélever des cellules soit chez le patient à traiter (autogreffe), soit chez un donneur (allogreffe). Ces cellules sont ensuite purifiées, modifiées le cas échéant, puis multipliées en laboratoire. Elles sont alors injectées dans l’organe à traiter de la personne malade.

Les résultats d’une étude canadienne ayant concerné 7 personnes atteintes d’une forme sévère de myasthénie traitées par autogreffe de cellules souches hématopoïétiques ont été publiés en avril 2016. Ils montrent que cette stratégie s’est révélée efficace à long terme et a permis la rémission stable et complète de la myasthénie. A noter qu’un patient a développé une seconde maladie auto-immune après le traitement. [245]

4.4. Le tirasemtiv

Dans les muscles squelettiques rapides, le tirasemtiv est un activateur de la troponine, une protéine localisée dans le sarcomère et sensible au calcium.

Des travaux sur des modèles animaux ont montré que le tirasemtiv pouvait améliorer la force musculaire de ces animaux.

Aux États-Unis, un essai de phase II a évalué les effets du tirasemtiv sur la fonction motrice et la fatigabilité de 32 personnes atteintes de myasthénie. Les résultats publiés en mars 2015 ont montré que le produit était bien toléré. Six heures après son administration, le tirasemtiv a entraîné une amélioration du score de myasthénie quantitatif (QMG) de façon proportionnelle à la dose. [246]
5. **Education**

L’éducation du patient et de son entourage est un moment important de la prise en charge thérapeutique, et permet d’anticiper un certain nombre de complications.

Des informations seront données sur les caractéristiques de la maladie (son mécanisme, son caractère fluctuant, le risque de poussée et les médicaments contre-indiqués), ses conséquences socio-professionnelles et psychologiques, le traitement (mécanisme d’action, suivi et effets secondaires éventuels), les facteurs qui peuvent provoquer des poussées de la maladie : non-respect des médicaments contre-indiqués (voir Annexe 2), infections (les informations seront données au patient concernant le risque augmenté d’infections en cas d’immunothérapie), intervention chirurgicale, grossesse, décroissance trop rapide des doses de traitement, mise en route d’une corticothérapie, facteurs environnementaux comme le stress ou le surmenage. Pour chaque nouveau médicament, il faudra prendre en compte les risques liés à sa prescription et les risques liés à l’abstention thérapeutique.

Le patient et son médecin généraliste doivent connaître les signes annonciateurs de la crise myasthénique.

La grossesse est possible sous anticholinestérasiques, des poussées de la maladie sont possibles dans le post-partum

Des informations sont données au patient, à son entourage et à son médecin traitant sur :

- les caractéristiques de la maladie : mécanisme, caractère chronique, risque de poussées évolutives... ;
- son retentissement socioprofessionnel et psychologique ;
- le traitement prescrit : mode d’action, modalités de surveillance, effets indésirables... ;
le risque d’extension de la fatigabilité aux muscles extra-oculaires en cas de forme oculaire initiale, qui est maximal dans les 2 ans ;

- les facteurs susceptibles de déclencher des poussées ;
- les symptômes qui doivent faire consulter en urgence ;
- le risque persistant de poussée en phase de rémission ou de stabilisation prolongée sous traitement.
VII Suivi

Le rythme du suivi spécialisé varie en fonction de l’état clinique.

β En cas de symptômes oculaires isolés en début de maladie, le patient doit être revu en consultation au plus tard dans les six mois pour dépister une extension.

β Un patient dont les symptômes ne sont pas stabilisés et/ou dont le traitement n’est pas équilibré relève d’un suivi, au minimum deux fois par an.

β Un patient asymptomatique ou pauci-symptomatique, stabilisé sous traitement, justifie d’un suivi annuel.

À chaque consultation ou hospitalisation :

¬ Évaluer les déficits moteurs et leurs répercussions fonctionnelles avec le maximum de précisions pour déterminer le traitement optimal. Certaines caractéristiques de la myasthénie (fatigabilité musculaire, variabilité de la localisation des atteintes, fluctuations importantes des manifestations) rendent cette appréciation pour la myasthénie plus difficile que pour d’autres maladies neuromusculaires.

¬ Trois méthodes de suivi allient une fiabilité et une simplicité acceptables :
 - un score quantitatif : score myasthénique ; qui cote la force et la fatigabilité dans les principaux territoires musculaires (Annexe 3)
 - une classification clinique de la gravité élaborée par la Myasthenia Gravis Foundation of America (MGFA) (Annexe V).
 - une cotation du résultat thérapeutique (« post- intervention status ») de la MGFA également (Annexe VII).

¬ Apprécier la qualité de vie ainsi que l’éventuel retentissement socioprofessionnel et psychologique de la myasthénie.

¬ Apprécier la tolérance du traitement.

¬ La répétition du dosage des anticorps n’est pas validée.
Une mesure de la **capacité vitale** : devant tout symptôme respiratoire et dans les myasthénies généralisées sévères.

En cas d’antécédent de **thymome** : la possibilité d’une récidive, parfois de trèsnombreuses années après, impose une surveillance systématique par imagerie thoracique (scanner ou IRM).

En cas de thymome macro-invasif, l’imagerie sera renouvelée tous les 6 mois pendant 2 ans, puis tous les ans.

Patient **non thymectomisé** atteint d’une myasthénie généralisée avec Ac anti-RACH : un contrôle au moins une fois du scanner thoracique, car un thymome peut apparaître dans un second temps.
CONCLUSION
La myasthénie est une maladie auto-immune rare, lié à un défaut de la transmission neuromusculaire. Elle se manifeste cliniquement par une fatigabilité musculaire accentuée à l’effort.

Le rôle du thymus en tant que site d'auto-sensibilisation aux récepteurs de l'acétylcholine est bien établi. Cependant, la part précise jouée par cet organe dans le déclenchement et l'entretien de la maladie reste à définir.

Notre étude prospective, couplée à l’analyse des dernières données de la littérature nous ont permis de réaffirmer des caractéristiques fondamentales de la myasthénie :

- C’est une affection qui se voit à tout âge, avec cependant 2 pics de fréquence et prédominance féminine.
- C’est une pathologie de présentation clinique très variable et hétérogène selon la forme clinique et selon la forme sérologique.
- L’arsenal thérapeutique comprend des traitements symptomatiques et des traitements immunorégulateurs agissant à cours ou à long terme.
- Compte tenu du rôle joué par le thymus dans la pathogénie de la maladie, la thymectomie constitue l’un des aspects thérapeutiques les plus importants. Bien qu’il soit bien justifié en présence de thymome, l’indication en absence de celui-ci a été retenue en se basant sur un récent essai clinique contrôlé randomisé.

Il est admis que la résection de la glande thymique doit être la plus complète possible, emportant l’ensemble de la graisse médiastinale et cervicale.

Dans cette thèse, nous avons cherché à déterminer les facteurs pronostiques influençant les résultats de la chirurgie dans la prise en charge de la myasthénie, mais plus précisément quel rôle pouvait apporter la thymectomie à l’évolution de cette pathologie auto-immune.

Mlle. ABOUTALEB Nezha
Nous avons confirmé certains des résultats précédemment décrits dans d'autres grandes séries.

Les patients de notre étude ont présenté une évolution favorable après thymectomie.

Aucunes des caractéristiques épidémiologique cliniques, paraclinique ou radiologique ne prédisent au bon développement de la maladie après la chirurgie, hormis le type histologique : le thymome étant un élément péjoratif ???

D'autres études, y compris avec des données sérologiques plus précises et sur des durées de suivis plus longues sont maintenant nécessaires pour mieux préciser la relation entre thymectomie et rémission et comprendre le mécanisme d’auto-immunité qui se poursuit probablement de façon périphérique et indépendamment de l’acte de thymectomie.
ICONOGRAPHIE
Pièces opératoires de thymectomie réalisées au service de chirurgie thoracique

Ibn Sina par sternotomie médiane.
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Mlle. ABOUTALEB Nezha
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Mlle. ABOUTALEB Nezha
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Coupe scannographique : Comblement de la loge thymique en rapport avec une hyperplasie thymique

Iconographie 2
Radiographie thoracique de face : élargissement médiastinal

Iconographie 3
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Mlle. ABOUTALEB Nezha

Coupe scannographique : thymome

Iconographie 4
Vue opératoire de thymectomie par sternotomie réalisées au service de chirurgie thoracique du CHU IBN SINA
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Mlle. ABOUTALEB Nezha
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Mlle. ABOUTALEB Nezha

Iconographie 5
Thymus ectopique 5 [247]

Iconographie 6

Mlle. ABOUTALEB Nezha
ANNEXES
Annexe I

Fiche d’exploitation

<table>
<thead>
<tr>
<th>Identité</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom et prénom</td>
<td>………………………………..</td>
</tr>
<tr>
<td>N° d’entrée</td>
<td>………………………………..</td>
</tr>
<tr>
<td>Sexe</td>
<td>………………………………..</td>
</tr>
<tr>
<td>N° d’ordre</td>
<td>………………………………..</td>
</tr>
<tr>
<td>Age</td>
<td>………………………………..</td>
</tr>
<tr>
<td>Profession</td>
<td>………………………………..</td>
</tr>
<tr>
<td>Situation matrimoniale</td>
<td>………………………………..</td>
</tr>
<tr>
<td>Niveau d’instruction</td>
<td>………………………………..</td>
</tr>
<tr>
<td>Téléphone</td>
<td>………………………………..</td>
</tr>
<tr>
<td>Niveau socio-économique</td>
<td>………………………………..</td>
</tr>
<tr>
<td>Couverture sociale</td>
<td>Mutuelle FAR ☐, CNOPS ☐, CNSS ☐, Autre ☐, Rien ☐</td>
</tr>
<tr>
<td>Origine et habitat</td>
<td>………………………………..</td>
</tr>
</tbody>
</table>

ANTECEDENTS

Médicaux
- HTA : Oui ☐ Non ☐ si oui sous quel traitement
- Cardiopathie : oui ☐ non ☐ type et traitement
- Diabète : oui ☐ non ☐ type :
- Maladie auto-immune : oui ☐ non ☐ si oui quel type :

Chirurgicaux
- Opéré(e) : oui ☐ non ☐ ; si oui pour

Toxiques
- Tabagisme : oui ☐ non ☐ si oui paquet/année :
- Alcoolisme : oui ☐ non ☐
- Autre :

Allergique
- Allergie : oui ☐ non ☐ ; si oui type :

Familiaux
- Cas similaire dans la famille : oui ☐ non ☐
- Maladie auto-immune dans la famille : oui ☐ non ☐
- Consanguinité des parents : oui ☐ non ☐
Myasthénie

<table>
<thead>
<tr>
<th>Clinique</th>
<th>Signes cliniques</th>
<th>Classification MGFA en pré opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date de début de la symptomatologie myasthénique (âge de début) : ...</td>
<td>Stade I ☐ Stade III a ☐</td>
</tr>
<tr>
<td></td>
<td>Date de diagnostic (Age du diagnostic) :...</td>
<td>Stade II a ☐ Stade IV a ☐</td>
</tr>
<tr>
<td></td>
<td>Signes clinique : atteinte généralisé ☐ atteinte oculaire ☐ atteinte bulbaire ☐</td>
<td>Stade II b ☐ Stade IV b ☐</td>
</tr>
<tr>
<td></td>
<td>classification MGFA en pré opératoire :</td>
<td>Stade III a ☐ Stade V ☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraclinique</th>
<th>EMG</th>
<th>Stimulation répétitive Electromyographie de fibre unique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC anti R Ach AC anti MusK AC anti muscle strié</td>
<td>☐ (+) ☐ (-) ☐ (NE) ☐ (+) ☐ (-) ☐ (NE) ☐ (+) ☐ (-) ☐ (NE)</td>
</tr>
</tbody>
</table>

| Radiologie | TDM thoracique | Normal ☐ Hypertrophie thymique ☐ Thymome ☐ |

<p>| Traitement | Anticholinestérasiques | Mestinon* : oui ☐ non ☐ posologie : ... |
| | Mytelese* : oui ☐ non ☐ posologie : ... | |
| Corticoïdes | Prednisone ou prednisolone : oui ☐ non ☐ | Posologie : ... |
| | Durée : ... |
| | Azathioprine (Imurel*) : oui ☐ non ☐ posologie : ... |
| | Mycophénolate de mofétil (Cellcept*) : oui ☐ non ☐ posologie : ... |
| | Cyclophosphamide (Endoxan*) : oui ☐ non ☐ posologie : ... |
| | Methotrexate : oui ☐ non ☐ posologie : ... |
| | Rituximab : oui ☐ non ☐ posologie : ... |
| | Plasmaphérèse : oui ☐ non ☐ nombre de cure : ... |
| | Immunoglobulines IV : oui ☐ non ☐ nombre de cure : ... |</p>
<table>
<thead>
<tr>
<th>PEC pré-opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délai entre chirurgie et début de la myasthénie</td>
</tr>
<tr>
<td>Prémédication</td>
</tr>
<tr>
<td>MGFA</td>
</tr>
<tr>
<td>EFR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>En per-opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voie d’abord (classification modifiée des thymectomies selon la MGFA)</td>
</tr>
<tr>
<td>T-1 Thymectomie Trans cervicale : Basique ☐, Etendue ☐, Etendue avec section partielle du sternum ☐ Etendue vidéo-assistée ☐</td>
</tr>
<tr>
<td>T-2 Thymectomie vidéo-assistée : Unilatérale ☐, Bilatérale avec dissection cervicale (VATET) ☐ Robot-assistée unilatérale ☐, Robot-assistée bilatérale ☐</td>
</tr>
<tr>
<td>T-3 Thymectomie trans-sternale Standard ☐, Etendue ☐</td>
</tr>
<tr>
<td>T-4 Thymectomie trans-sternale et transcervicale ☐</td>
</tr>
<tr>
<td>T-5 Thymectomie infra-sternale : Transcervicale et subxyphoidienne combinées ☐, Subxyphoidienne vidéo-assistée ☐, Subxyphoidienne robot-assistée ☐, Médiastinoscopie infra-sternale ☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incident peropératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratoire</td>
</tr>
<tr>
<td>Hémodynamique</td>
</tr>
<tr>
<td>Hémorragique</td>
</tr>
<tr>
<td>Lésion nerveuse</td>
</tr>
<tr>
<td>Lésion vasculaire</td>
</tr>
<tr>
<td>Autre</td>
</tr>
</tbody>
</table>

Mlle. ABOUTALEB Nezha

Thèse N°:177/17
<table>
<thead>
<tr>
<th>En post-opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réveil</td>
</tr>
<tr>
<td>Sur table □</td>
</tr>
<tr>
<td>En réanimation □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service d'hospitalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durée d'hospitalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complication post-opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratoire □</td>
</tr>
<tr>
<td>Hémodynamique □</td>
</tr>
<tr>
<td>Hémorragique □</td>
</tr>
<tr>
<td>Lésion nerveuse □</td>
</tr>
<tr>
<td>Lésion vasculaire □</td>
</tr>
<tr>
<td>Crise myasthénique □</td>
</tr>
<tr>
<td>Crise cholinergique □</td>
</tr>
<tr>
<td>Autre □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evolution à long terme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avis du patient : il ressent ...</td>
</tr>
<tr>
<td>Une amélioration □</td>
</tr>
<tr>
<td>Une aggravation □</td>
</tr>
<tr>
<td>Aucun changement □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MGFA post opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rémission complète stable (CSR) □</td>
</tr>
<tr>
<td>Rémission pharmacologique (PR) □</td>
</tr>
<tr>
<td>Manifestations minimes (MM) □</td>
</tr>
<tr>
<td>MM-0 □</td>
</tr>
<tr>
<td>MM-1 □</td>
</tr>
<tr>
<td>MM-2 □</td>
</tr>
<tr>
<td>MM-3 □</td>
</tr>
<tr>
<td>Amélioré (I) □</td>
</tr>
<tr>
<td>Inchangé (U) □</td>
</tr>
<tr>
<td>Aggravé (W) □</td>
</tr>
<tr>
<td>Exacerbation (E) □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taux AC anti-RACH de contrôle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmenté □</td>
</tr>
<tr>
<td>Diminué □</td>
</tr>
<tr>
<td>Taux : ...</td>
</tr>
<tr>
<td>Taux : ...</td>
</tr>
<tr>
<td>Inconnu □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type histologique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperplasie thymique □</td>
</tr>
<tr>
<td>thymome □</td>
</tr>
<tr>
<td>thymolipome □</td>
</tr>
<tr>
<td>thymus en involution graisseuse □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notion d'hospitalisation en réanimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui □</td>
</tr>
<tr>
<td>non □</td>
</tr>
<tr>
<td>si oui, la cause : Et nombre : ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Décès</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui □</td>
</tr>
<tr>
<td>non □</td>
</tr>
<tr>
<td>si oui, la cause : ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Récidive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui □</td>
</tr>
<tr>
<td>non □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Si thymome, notion de métastase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui □</td>
</tr>
<tr>
<td>non □</td>
</tr>
<tr>
<td>localisation : ...</td>
</tr>
</tbody>
</table>

NE : non effectué
ANNEXE II

Médicaments contre-indiqués au cours de la myasthénie

<table>
<thead>
<tr>
<th>Contre-indications absolues :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminosides, colimycine, polymyxine, telithromycine, cyclines injectables, macrolides, fluoroquinolones</td>
</tr>
<tr>
<td>Quinines, quinidine, hydroxychloroquine, procaïnamide</td>
</tr>
<tr>
<td>Bêta-bloquants (même en collyre)</td>
</tr>
<tr>
<td>Diphenyl-hydantoïne, trimethadione</td>
</tr>
<tr>
<td>Dantrolène</td>
</tr>
<tr>
<td>D- penicillamine</td>
</tr>
<tr>
<td>Magnésium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contre-indications relatives :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curarisants : l’usage de molécules non dépolarisantes de dégradation rapide, commel’atracurium, est possible (nécessité d’un monitorage précis)</td>
</tr>
<tr>
<td>Benzodiazépines</td>
</tr>
<tr>
<td>Neuroleptiques (phenothiazine)</td>
</tr>
<tr>
<td>Carbamazépine</td>
</tr>
<tr>
<td>Lithium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cas particuliers :</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’allopurinol potentialise l'effet de l'azathioprine : il faut réduire la dose des 2/3 et surveiller étroitement la NFS.</td>
</tr>
<tr>
<td>L’injection d’iode pour examen radiologique de contraste peut induire une décompensation aigüe. Elle est déconseillée en cas de poussée.</td>
</tr>
<tr>
<td>Vaccinations : le retentissement sur la myasthénie est mal documenté. La vaccination contre la poliomyélite, le tétanos et la grippe n’entraîne pas d’aggravation lorsque la myasthénie est bien contrôlée. Les vaccins vivants (par exemple polio buccal) sont formellement contre-indiqués chez les patients sous corticoïdes ou immunosuppresseurs.</td>
</tr>
<tr>
<td>L’interféron alpha et bêta peuvent aggraver voire induire une myasthénie.</td>
</tr>
<tr>
<td>L’utilisation de patch de nicotine pour le sevrage de l’intoxication tabagique peut aggraver la myasthénie.</td>
</tr>
<tr>
<td>Toxine botulique à des fins esthétiques</td>
</tr>
<tr>
<td>Statines, effet négatif dans la myasthénie rapporté mais discuté.</td>
</tr>
</tbody>
</table>
ANNEXE III

Score myasthénique

<table>
<thead>
<tr>
<th>SCORE D’OSSERMAN GADJOS</th>
</tr>
</thead>
</table>
| **Membres supérieurs étendus à l’horizontale en antéposition** | - 1 point / 10 secondes
- Maximum 15 pts
- Minimum 0 pts |
| **Membres supérieurs en décubitus dorsal, à 90°** | - 1 points / 5 secondes
- Maximum 15 pts
- Minimum 0 pts |
| **Flexion de la tête, malade en décubitus dorsal** | - Contre résistance 10 pts
- Sans résistance 5 pts
- Impossible 0 pts |
| **Passage de la position couchée à la position assise** | - Sans l’aide des mains 10 pts
- Avec l’aide des mains 5 pts
- Impossible 0 pts |
| **Oculomotricité extrinsèque** | - Normale 10 pts
- Ptosis 5 pts
- Diplopie 0 pts |
| **Occlusion palpébrale** | - Complète 10 pts
- Incomplète 5 pts
- Nulle 0 pts |
| **Mastication** | - Normale 10 pts
- Diminué 5 pts
- Nulle 0 pts |
| **Déglutition** | - Normale 10 pts
- Dysphagie sans fausse route 5 pts
- Dysphagie avec fausse route 0 pts |
| **Phonation** | - Voix normale 10 pts
- Voix nasonnée 5pts
- Aphonie 0 pts |
| **Total** | /100 pts |

On considère que l’amélioration ou l’aggravation est :
- discrète pour une variation de 10 points
- moyenne pour une variation de 20 points
- importante pour une variation de 30 points
- très importante pour une variation de 40 points et plus
ANNEXE IV

Diagnostic différentiel de la myasthénie

<table>
<thead>
<tr>
<th>Maladie</th>
<th>Eléments différentiels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syndrome myasthénique congénital</td>
<td>transmission maternelle</td>
</tr>
<tr>
<td>Myasthénie induite par les médicaments</td>
<td>anamnèse antérieure (D-pénicillamine)</td>
</tr>
<tr>
<td>Syndrome myasthénique de Lambert-Eaton</td>
<td>carcinome bronchique à petites cellules, symptômes autonomes, électrophysiologie, anticorps</td>
</tr>
<tr>
<td>Polymyosite, dermatomyosite</td>
<td>CK, douleurs, EMG, biopsie</td>
</tr>
<tr>
<td>Myopathie mitochondriale</td>
<td>biopsie musculaire</td>
</tr>
<tr>
<td>Myotonie (Becker)</td>
<td>EMG, héritage autosomique-récessif</td>
</tr>
<tr>
<td>Paralysies périodiques dyskaliémiques</td>
<td>potassium sérique, familial, aucun symptôme oculaire ni oro-pharyngé</td>
</tr>
<tr>
<td>Maladies des moto-neurones</td>
<td>électrophysiologie, fasciculations, augmentation des réflexes</td>
</tr>
<tr>
<td>Symptômes oculaires dans le cadre d'une sclérose en plaques</td>
<td>évolution, LCR, IRM, électrophysiologie</td>
</tr>
<tr>
<td>Névrite des nerfs cérébraux</td>
<td>LCR, troubles de la sensibilité, anomalies pupillaires</td>
</tr>
<tr>
<td>Processus expansif intracrânien de la base du crâne</td>
<td>symptômes déficitaires, imagerie</td>
</tr>
<tr>
<td>Syndrome de Guillain-Barré</td>
<td>symptômes sensitifs, EMG/NLG</td>
</tr>
<tr>
<td>Ophtalmopathie endocrinienne</td>
<td>diagnostic de la thyroïde</td>
</tr>
<tr>
<td>Botulisme</td>
<td>anamnèse antérieure, symptômes gastro-intestinaux</td>
</tr>
<tr>
<td>Faiblesse non organique</td>
<td>anamnèse antérieure, évaluation psychiatrique</td>
</tr>
<tr>
<td>Syndrome de fatigue chronique</td>
<td>diagnostic d'exclusion</td>
</tr>
</tbody>
</table>
ANNEXE V

Classification Myasthenia Gravis Foundation of America (MGFA)

<table>
<thead>
<tr>
<th>Classe</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe I</td>
<td>Déficit des muscles oculaires. Faiblesse de l’occlusion des yeux possible. Force normale de tous les autres muscles.</td>
</tr>
<tr>
<td>Classe II</td>
<td>Déficit discret des muscles autres que les muscles oculaires. Déficit possible des muscles oculaires, de quelque sévérité qu’il soit. II a : atteinte prédominante des muscles des membres ou axiaux. II b : atteinte prédominante des muscles oropharyngés ou respiratoires.</td>
</tr>
<tr>
<td>Classe III</td>
<td>Déficit modéré des muscles autres que les muscles oculaires. Déficit possible des muscles oculaires, de quelque sévérité qu’il soit. III a : atteinte prédominante des muscles des membres ou axiaux. III b : atteinte prédominante des muscles oropharyngés ou respiratoires.</td>
</tr>
<tr>
<td>Classe IV</td>
<td>Déficit sévère des muscles autres que les muscles oculaires. Déficit possible des muscles oculaires, de quelque sévérité qu’il soit. IV a : atteinte prédominante des muscles des membres ou axiaux. IV b : atteinte prédominante des muscles oropharyngés ou respiratoires.</td>
</tr>
<tr>
<td>Classe V</td>
<td>Nécessité d’une intubation (avec ou sans ventilation mécanique).</td>
</tr>
</tbody>
</table>
ANNEXE VI
Classification de De Filippi

<table>
<thead>
<tr>
<th>Stade 1</th>
<th>Rémission complète, aucun traitement symptomatique nécessaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stade 2</td>
<td>Asymptomatique, baisse de la posologie médicamenteuse.</td>
</tr>
<tr>
<td>Stade 3</td>
<td>Amélioration symptomatique, baisse de la posologie médicamenteuse.</td>
</tr>
<tr>
<td>Stade 4</td>
<td>Pas d’amélioration symptomatique, même posologie médicamenteuse.</td>
</tr>
<tr>
<td>Stade 5</td>
<td>Aggravation des symptômes.</td>
</tr>
</tbody>
</table>
Classification Myasthenia Gravis Foundation of America (MGFA) postopératoire.

<table>
<thead>
<tr>
<th>Stades</th>
<th>Critères</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rémission complète stable (CSR)</td>
<td>Le patient n’a aucun symptôme ou signe de myasthénie depuis au moins 1 an et n’a reçu aucun traitement durant cette période. Il n’y a aucune faiblesse musculaire dépistable, lors d’un examen réalisé par un spécialiste du système neuromusculaire. Un trouble isolé de l’occlusion palpébrale est toléré.</td>
</tr>
<tr>
<td>Rémission pharmacologique (PR)</td>
<td>Même critères que la rémission complète stable, si ce n’est que le patient poursuit un traitement. Les anticholinestérasiques ne sont pas acceptés, car ils sous-entendent une faiblesse musculaire.</td>
</tr>
<tr>
<td>Manifestations minimales (MM)</td>
<td></td>
</tr>
<tr>
<td>MM-0</td>
<td>Le patient présente des déficits musculaires, mais sans retentissement fonctionnel.</td>
</tr>
<tr>
<td>MM-1</td>
<td>Le patient continue à suivre un traitement immunosuppresseur en dehors d’un traitement anticholinestérasique.</td>
</tr>
<tr>
<td>MM-2</td>
<td>Le patient a reçu des anticholinestérasique de moins de 120 mg/j depuis au moins 1 an.</td>
</tr>
<tr>
<td>MM-3</td>
<td>Le patient a reçu des immunosuppresseurs, des Anticholinestérasiques et d’autres traitements symptomatiques durant l'année précédente.</td>
</tr>
<tr>
<td>Amélioré (I)</td>
<td>Diminution significative de la symptomatologie ou des doses médicamenteuses.</td>
</tr>
<tr>
<td>Inchangé (U)</td>
<td>Pas de modification significative de la symptomatologie ou des doses médicamenteuses.</td>
</tr>
<tr>
<td>Aggravé (W)</td>
<td>Augmentation significative de la symptomatologie ou des doses médicamenteuses.</td>
</tr>
<tr>
<td>Exacerbation (E)</td>
<td>Patient ayant rempli les critères de CSR, PR ou MM, mais qui a développé par la suite des signes non autorisés par ces classes.</td>
</tr>
<tr>
<td>Mort de MG (D of MG)</td>
<td>Patient mort de myasthénie ou des complications liées au traitement de la myasthénie, ou dans les 30 jours qui suivent la thymectomie</td>
</tr>
</tbody>
</table>
Annexe VIII

Comparaison immunoglobulines intraveineuses (IgIV) et échange plasmatique (EP)

<table>
<thead>
<tr>
<th></th>
<th>Immunoglobulines intraveineuses ou veinoglobulines (IgIV)</th>
<th>Échange plasmatique (EP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mécanisme d’action</td>
<td>Diminuent la production d’anticorps anti-RAC; modulent la fonction des cellules T</td>
<td>Enlèvent les anticorps anti-RAC de l’espace extracellulaire</td>
</tr>
<tr>
<td>Indications</td>
<td>Exacerbations de la MG ; insuffisance respiratoire aiguë ; préparation pour chirurgie ; utilisation à long terme dans MG réfractaire</td>
<td>Exacerbations de la MG ; insuffisance respiratoire aiguë ; préparation avant chirurgie</td>
</tr>
<tr>
<td>Organisation du traitement</td>
<td>2g/kg répartis sur 2-5 jours</td>
<td>3 à 5 échanges, 1 fois par jour ou tous les 2 jours</td>
</tr>
<tr>
<td>Niveau de réponse</td>
<td>IgIV = EP</td>
<td>IgIV = EP</td>
</tr>
<tr>
<td>Début de l’action</td>
<td>≥ 3-4 jours</td>
<td>En 1-2 jours</td>
</tr>
<tr>
<td>Durée de l’effet</td>
<td>1-2 mois (IgIV = EP)</td>
<td>1-2 mois (IgIV = EP)</td>
</tr>
<tr>
<td>Efficacité</td>
<td>IgIV = EP</td>
<td>IgIV = EP</td>
</tr>
<tr>
<td>Gravité/fréquence des effets secondaires</td>
<td>Problèmes d’agrégation des plaquettes ; réactions allergiques ; méningite lymphocitaires (rare)</td>
<td>Variations PA, problèmes d’accès veineux, durée du traitement = 3-5 h.</td>
</tr>
<tr>
<td>Coût</td>
<td>9 800 $</td>
<td>5 120 $ + frais indirects</td>
</tr>
<tr>
<td>Disponibilité</td>
<td>Facilement accessible – injectées en service de consultation externe.</td>
<td>Demande équipement spécial & compétence ; faisable dans très peu de centres de soins tertiaires.</td>
</tr>
</tbody>
</table>
Annexe IX :

Comparaison des différents inhibiteurs de l’acétylcholinestérase

<table>
<thead>
<tr>
<th>Substance</th>
<th>Présentation</th>
<th>Posologie (adulte)</th>
<th>Entrée en action</th>
<th>Durée d’action</th>
</tr>
</thead>
<tbody>
<tr>
<td>bromure de pyridostigmine</td>
<td>Comprimé enrobé 60 mg</td>
<td>4 à 8 cp en 3-4 prises</td>
<td>15-30 min</td>
<td>4-6 h</td>
</tr>
<tr>
<td>(Mestinon®)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bromure de pyridostigmine</td>
<td>Comprimé enrobé 180 mg</td>
<td>1 comprimé, 1-2 fois par jour (12 heures entre les doses)</td>
<td>30-60 min</td>
<td>6-12 h</td>
</tr>
<tr>
<td>: formé retard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Mestinon retard ®)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bromure de pyridostigmine</td>
<td>5 mg/ml (ampoules de 2 & 5 ml)</td>
<td>2 mg toutes les</td>
<td>2-5 min</td>
<td>Jusqu’à 2 h</td>
</tr>
<tr>
<td>IV (injection ; Regonol®)*</td>
<td>Ampoule 0.5 mg/ml</td>
<td>2 à 5 ampoules</td>
<td>1 min (i.v.) à 10 min (i.m et s.c.)</td>
<td>70-80 min (iv) 2h (s.c. i.m.)</td>
</tr>
<tr>
<td>Néostigmine (Prostigmine®)</td>
<td>Ampoule 0.5 mg/ml</td>
<td>2 à 5 ampoules par jour, réparties en 4 à 6 s.c. ou i.m. administrations Pour le test : 0.5 à 1 mg par voie i.m. ou i.v</td>
<td>1 min (i.v.) à 10 min (i.m et s.c.)</td>
<td>70-80 min (iv) 2h (s.c. i.m.)</td>
</tr>
<tr>
<td>chlorure d’ambénonium (Mytelase®)</td>
<td>Comprimé 10 mg</td>
<td>3 à 10 cp en 3-4 prises</td>
<td>60 min</td>
<td>6-8 h</td>
</tr>
<tr>
<td>chlorure d’édrophonium (Tensilon®)</td>
<td>Ampoule 10 mg</td>
<td>Pour le test : 10 mg en i.v.</td>
<td>30 sec</td>
<td>5-10 min</td>
</tr>
</tbody>
</table>

Le Mestinon Retard n’est pas disponible au Maroc.
RESUME
RESUME

Titre : Place de la thymectomie dans la prise en charge de la myasthénie.
Résultats d'une étude prospective au service de Chirurgie Thoracique du CHU Ibn Sina de Rabat : A propos de 41 cas.

Auteur : ABOUTALEB Nezha

Mots clés : hyperplasie thymique, myasthénie, rémission, thymome, thymectomie.

Introduction La thymectomie est classiquement considérée comme un traitement efficace pour une amélioration voire une rémission de la myasthénie. Toutefois, les facteurs liés à cette efficacité ne sont pas clairement identifiés.

Objectifs : Déterminer les facteurs pronostiques influençant les résultats de la chirurgie dans la prise en charge de la myasthénie.

Patients et méthodes : Il s'agit d’une étude prospective portant sur 41 patients atteints de myasthénie opérés au sein du service de la chirurgie thoracique du CHU Ibn sina de Rabat sur une période de cinq ans, allant de Juin 2010 à Mai 2015. L’indication de la thymectomie a été retenue chez tous les patients myasthéniques avec ou sans anomalies thymiques. La voie d’abord chirurgicale était une sternotomie médiane. La classification MGFA était utilisée comme moyen d’évaluation.

Nous avons analysé : l’âge, le sexe, le stade MGFA préopératoire, l'histologie thymique, la durée des symptômes, les traitements médicaux reçus.

Résultats

Notre échantillon était constitué de 18 hommes (43.9 %) et 23 femmes (56 %). L’âge moyen était de 22, 41 ± 14,47 ans. La prédominance féminine est importante, surtout avant 40 ans avec un sex ratio F/H=2.1. Un tiers des patients appartiennent au stade I. Tous nos patients avaient bénéficié d’une TDM thoracique, d’un EMG et d’une recherche des anticorps anti- récepteur à l’acétylcholine.85.3% des EMG ont
révélé un bloc neuromusculaire post synaptique. La recherche des anticorps anti-récepteur à l’acétylcholine étaient positifs chez 85.36% des patients.

Le délai moyen de la chirurgie après les premiers signes cliniques est de 22,41 mois.

La TDM thoracique s’est révélée normale dans 11 cas (26.8%) et anormale chez 30 patients soit 73.1% des cas dont 9 cas d’hypertrophie de la glande thymique et 21 cas de tumeur thymique. 90% de nos patients myasthéniques présentent une anomalie thymique : Dans 46% des cas il s’agit d’une hyperplasie thymique et dans 48% des cas d’un thymome.

La durée moyenne de suivi est de 31.27 +/- 16.96 mois.

Les suites opératoires étaient marquées par le décès d’une patiente au 10e jour post-opératoire suite à une embolie pulmonaire massive.

La durée moyenne de survenue de MM/R est de 17,26 ± 1,45 mois.

Le taux de rémission complète à 1 an était de 30 %. La chirurgie diminuait la fréquence des poussées postopératoires de façon égale chez tous nos patients. Le degré d’amélioration postopératoire n’était pas significativement différent chez nos patients. Notre taux de rémission complète, comparable à ceux de la littérature, doit tenir compte du caractère précoce de ces premiers résultats.

Conclusion

La thymectomie offre les mêmes résultats positifs pour tous nos patients. Ils ont atteint des taux de rémission similaires à ceux rapportés par d’autres études. Nos résultats positifs sont appuyés par une étude randomisée multicentrique récente qui a permis d’apporter une preuve claire de l’efficacité de la thymectomie comme traitement de fond de la myasthénie.

Donc, l’âge, le sexe, le délai préopératoire, le stade MGFA et les traitements antérieurs ne semblent pas être des prédicteurs de la réponse à la thymectomie pour MG.
Abstract

Title: Place of thymectomy in the management of myasthenia gravis. Results of a prospective study at the Department of Thoracic Surgery of Ibn Sina University Hospital of Rabat: About 41 cases.

Author: ABOUTALEB Nezha

Keywords: Hyperplasia of the thymus, myasthenia gravis, remission, thymoma, thymectomie.

Background: Thymectomy has become an accepted option in the treatment of myasthenia gravis (MG). However, the optimal selection of patients for surgery remains controversial.

Objective: The objective of the study is to determine factors influencing improvement and remission rates after thymectomy for MG.

Materiel and Methods: This study is a prospective review of 41 thymectomy performed for MG over a 5-year period at the Department of Thoracic Surgery of Ibn Sina University Hospital of Rabat, from June 2010 to Mai 2015. The indication of thymectomy was retained in all myasthenic patients with or without thymic abnormalities whatever their response to medical treatments. Surgical approach was total median sternotomy. Complete stable remission was the primary endpoint. The MGFA classification was used as a means of evaluation.

We analyzed if patient’s age, sex, preoperative MGFA Stage, thymic histology, duration of symptoms, or radiological findings influenced outcome.

The clinical outcome at the end of the follow-up was graded according to the MGFA Postintervention Status classification. Outcomes were stable remission and clinical or pharmacologic improvement.

Results:

There were 23 females (56 %) and 18 males (43.9 %). mean age were: 22,41 ± 14,47 years. with more females especially before 40 years with a sex ratio F / H = 2.1. and more patients in MGFA classes 1 at diagnosis (34%)
All patients had thoracic CT, EMG and anti-acetylcholine receptor antibody. 85.3% of EMG revealed a post-synaptic neuromuscular block. The search for anti-receptor antibodies to acetylcholine was positive in 85.36% of patients.

The mean duration from onset of disease to surgery was 22.41 months.

Hyperplasia of the thymus was observed in 17 patients (41%), thymoma in 18 (43%), and atrophic or normal thymus in 4 (10%).

Mean duration of follow-up was 31.27 +/- 16.96 months.

One patient died at tenth day following thymectomy due to massive pulmonary embolism.

The rate of CSR at 1 years was 30%.

Our patients show improvement and remission rates similar to those reported by other studies. No relation was observed between outcome and age, sex, duration of symptoms, thymic pathology, duration of disease before thymectomy and medications.

Conclusions:

The beneficial effects of thymectomy is characterized by postoperative clinical improvement in most patients with moderate to severe preoperative myasthenic involvement and by a higher remission rate in patients with thymic hyperplasia and/or mild myasthenic symptoms.

Age, sex, length of symptoms, preoperative MGFA Stage, thymic pathology, and medications appear not to be predictors of response to thymectomy for MG.

Thymectomy should be advocated for all patients with myasthenia gravis.

Recently published prospective randomized trial provides definitive evidence that thymectomy significantly improves the clinical course of patients with myasthenia gravis.
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Mènès

L’objet de la thymectomie consiste à la prise en charge de la myasthénie, dans une étude de 41 cas.

La clinique:

La myasthénie est une affection caractérisée par une altération de la fonction neuromuskulaire. Elle est généralement due à la production d’antiglobulines qui bloquent les récepteurs nicotiniques des terminaisons nerveuses musculaires. La thymectomie est une intervention chirurgicale qui consiste à retirer le thymus, un gland situé au-dessus du cœur. Elle est souvent utilisée dans le traitement de la myasthénie, surtout si elle est sévère ou si elle ne répond pas à d’autres formes de traitement.

La thymectomie est généralement effectuée par voie cervicale ou thoracique. L’intervention est généralement bien tolérée par les patients, bien que certaines complications soient possibles, telles que des problèmes de cicatrisation ou des douleurs postopératoires.

La thymectomie est généralement suivie d’une amélioration des symptômes de la myasthénie. Cependant, la réaction en est variable et il est possible que des symptômes de récidive apparaissent après quelques mois ou années.

Dans cet article, nous présentons les résultats d’une étude de 41 patients atteints de myasthénie, dont 18 hommes et 23 femmes, âgés en moyenne de 22,4 années. Les patients ont été suivis pendant une période moyenne de 2,12 ans.

Les résultats de l’étude montrent une amélioration significative des symptômes de la myasthénie après la thymectomie. Les patients ont généralement été plus actifs et avaient une meilleure qualité de vie. Les complications étaient peu fréquentes et les patients ont généralement bien supporté l’intervention.

En conclusion, la thymectomie est une intervention efficace pour le traitement de la myasthénie. Elle est généralement bien supportée par les patients et apporte une amélioration significative des symptômes de la maladie.

Pour plus d’informations, veuillez contacter les auteurs de l’étude ou consulter la littérature médicale appropriée.
BIBLIOGRAPHIE
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

[46]: Mariem Mhiri, Malek Mansour, Hajer Derbali , Mariem Messelmeni, Jamel Zaouali, Ridha Mrissa. La coexistence des anticorps anti-tyrosine kinase spécifique de muscle et les anticorps anti-récepteurs acétylcholine. Revue Neurologique ;Volume 171, Supplement 1, April 2015, Pages A158
Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

[47]: Kim N1, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell. 2008 Oct 17;135(2):334-42

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

[88]: Grob, D., Arsura, E.L., Brunner, N.G. and Namba, T. 1987. The course of myasthenia gravis and the therapies affecting outcome; Ann NY Acad Sci,

Mlle. ABOUTALEB Nezha

diagnostic assays. J Neurol Neurosurg Psychiatry. 1985 Dec; 48(12): 1246-

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Mlle. ABOUTALEB Nezha 223

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

[133]: Penisson-Besnier I. Traitement de la myasthénie auto-immune. Rev Neurol 2009

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

[214] Christos Prokakis, MD, Efstratios Koletsis, MD, PhD, Stavroula Salakou, MD, PhD, Efstratios Apostolakis, MD, PhD, Nikolaos Baltayiannis, MD, Antonios Chatzimichalis, MD, Theodoros Papapetropoulos, MD, PhD, and Dimitrios Dougenis, MD, PhD. Modified Maximal Thymectomy for Myasthenia Gravis: Effect of Maximal Resection on Late Neurologic Outcome and Predictors of Disease Remission. Ann Thorac Surg. 2009 Nov;88(5):1638- 456

[219] (Monden et al., 1984; Papatestas et al., 1987; Grob et al., 1987; Jaretzki et al., 1988; Oosterhuis, 1989; Durelli et al., 1991; Masaoka et al., 1996; Cosi et al., 1997; Venuta et al., 1999; Budde et al., 2001; Evoli et al., 2002).

[229] Lei Yu, MD, Xiao-jun Zhang, MD, Shan Ma, MD, Fei Li, MD, Yun-feng Zhang, MD. Thoracoscopic Thymectomy for Myasthenia Gravis With and Without Thymoma: A Single-Center Experience

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats

[243] Josep Gamez, José Maria Ponseti. Thymectomy for non-thymomatous myasthenia gravis: the end of controversy, albeit fifty years late

Place de la thymectomie dans la prise en charge de la myasthénie. Résultats