TUBERCULOSE OSTÉO-ARTICULAIRE CHEZ L’ENFANT
(à propos de 08 cas)

THESE
PRESENTEE ET SOUTENUE PUBLIQUEMENT LE 12/12/2017

PAR
Mlle. EL KHAYARI Maryame
Née le 26 Octobre 1991 à Rissani

POUR L'OBTENTION DU DOCTORAT EN MEDECINE

MOTS- CLES :
Tuberculose - Ostéoarticulaire - Enfant

JURY

M. AFIFI MY ABDERRAHMANE ... PRESIDENT
Professeur de Chirurgie pédiatrique

Mme. ATARRAF KARIMA... RAPPORTEUR
Professeur agrégé de Chirurgie pédiatrique

M. KHATTALA KHALID... JUGES
Professeur agrégé de Chirurgie pédiatrique

Mme. CHATER LAMIAE.. JUGES
Professeur agrégé de Chirurgie pédiatrique

Mme. HAMMAS NAWAL.. MEMBRE ASSOCIE
Professeur assistant d’Anatomie pathologique
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Anesthésie général.</td>
</tr>
<tr>
<td>Anti-TNF</td>
<td>Anti-tissue necrosis factor.</td>
</tr>
<tr>
<td>ATCD</td>
<td>Antécédent.</td>
</tr>
<tr>
<td>BAAR</td>
<td>Bacille Acido Alcoolo Résistant</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacille de Calmette et Guérin</td>
</tr>
<tr>
<td>BK</td>
<td>Bacille de Koch</td>
</tr>
<tr>
<td>CDTMR</td>
<td>Centre de diagnostic de la tuberculose et des maladies respiratoires</td>
</tr>
<tr>
<td>CRP</td>
<td>Protéine C réactive</td>
</tr>
<tr>
<td>FPPP</td>
<td>Fermeture plan par plan.</td>
</tr>
<tr>
<td>GB</td>
<td>Globules blancs.</td>
</tr>
<tr>
<td>GEGC</td>
<td>Granulome épithéloïde et giganto-cellulaire</td>
</tr>
<tr>
<td>Hb</td>
<td>Hémoglobine</td>
</tr>
<tr>
<td>IDR</td>
<td>Intradermoréaction à la tuberculine</td>
</tr>
<tr>
<td>IGRA</td>
<td>Interferon gamma release assay.</td>
</tr>
<tr>
<td>IRM</td>
<td>Imagerie par résonance magnétique</td>
</tr>
<tr>
<td>Lymph</td>
<td>Lymphocyte.</td>
</tr>
<tr>
<td>M. Tuberculosis</td>
<td>Mycobactérium tuberculosis</td>
</tr>
<tr>
<td>NFS</td>
<td>Numération formule sanguine</td>
</tr>
<tr>
<td>NSE</td>
<td>Niveau socio économique</td>
</tr>
<tr>
<td>OMS</td>
<td>Organisation mondiale de la santé</td>
</tr>
<tr>
<td>PCR</td>
<td>Réaction de polymérisation en chaîne</td>
</tr>
<tr>
<td>PLQ</td>
<td>Plaquettes</td>
</tr>
<tr>
<td>PNLAT</td>
<td>Programme national de lutte anti tuberculeuse</td>
</tr>
</tbody>
</table>
Tuberculose ostéoarticulaire chez l’enfant

Mlle. EL KHAYARI Maryame

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNN</td>
<td>Polynucléaires neutrophiles</td>
</tr>
<tr>
<td>RX</td>
<td>Radiographie standard.</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculose</td>
</tr>
<tr>
<td>TDM</td>
<td>Tomodensitométrie</td>
</tr>
<tr>
<td>TEP</td>
<td>Tuberculose extra-pulmonaire</td>
</tr>
<tr>
<td>TOA</td>
<td>Tuberculose ostéoarticulaire</td>
</tr>
<tr>
<td>TP</td>
<td>Tuberculose pulmonaire</td>
</tr>
<tr>
<td>VIH</td>
<td>Virus de l’immunodéficience humaine</td>
</tr>
<tr>
<td>VS</td>
<td>Vitesse de sédimentation</td>
</tr>
</tbody>
</table>
PLAN
Tuberculose ostéoarticulaire chez L’ENFANT

Mlle. EL KHAYARI Maryame

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>HISTORIQUE</td>
<td>7</td>
</tr>
<tr>
<td>PHYSIOPATHOLOGIE</td>
<td>10</td>
</tr>
<tr>
<td>EPIDEMIOLOGIE</td>
<td>14</td>
</tr>
<tr>
<td>MATÉRIELS ET MÉTHODES</td>
<td>16</td>
</tr>
<tr>
<td>OBSERVATIONS CLINIQUES</td>
<td>20</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>49</td>
</tr>
<tr>
<td>RECOMMANDATION</td>
<td>76</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>78</td>
</tr>
<tr>
<td>RÉSUMÉS</td>
<td>80</td>
</tr>
<tr>
<td>ANNEXES</td>
<td>86</td>
</tr>
<tr>
<td>BIBLIOGRAPHIE</td>
<td>91</td>
</tr>
</tbody>
</table>
INTRODUCTION
La tuberculose est une maladie infectieuse provoquée par le Mycobacterium tuberculosis encore appelé Bacille de Koch du nom du professeur Robert Koch qui l’a isolé en 1882.

Elle pose un problème de santé publique à l’échelle mondiale et nationale.

La tuberculose ostéo-articulaire (TOA) se définit par l’ensemble des manifestations pathologiques secondaires aux atteintes des structures osseuses et articulaires de l’appareil locomoteur par le bacille de Koch (BK).[1]

Elle représente 3 à 5 % de l’ensemble des tuberculoses, environ 15 % des tuberculoses extra-pulmonaires. Elle prédomine au niveau du rachis et des articulations portantes. [2]

Elle est classiquement divisée en quatre tableaux principaux représentés par l’atteinte rachidienne, les arthrites ou ostéo-arthrites tuberculeuses, les ostéites ou ostéomyélites et enfin les ténosynovites et les bursites.

Son diagnostic est parfois difficile, il repose sur un faisceau d’arguments cliniques, biologiques, radiologiques, anatomopathologiques et évolutifs. Cependant, le recours à la biopsie chirurgicale reste l’examen de choix en cas de difficulté diagnostique.

Cette affection est jugée grave à cause du pronostic fonctionnel qui est souvent menacé par les destructions osseuses et articulaires laissant parfois des séquelles qui peuvent être une source d’handicap fonctionnel chez l’enfant.

Ce mauvais pronostic souligne l’intérêt d’un diagnostic précoce et impose l’instauration d’un traitement anti-bacillaire en cas de forte suspicion.
HISTORIQUE
La tuberculose a toujours existé, depuis la préhistoire.

Pour citer l'une des civilisations les plus prestigieuses, on sait qu'elle n'a épargné ni le petit peuple de l'ancienne Égypte, ni les prêtres, ni même le Pharaon ou des signes évidents de tuberculose osseuse sont visibles sur des momies égyptiennes. [3]

Figure1 [3]

A: Momie 003, Muse Archéologique de la maison Marques de San Jorge, Bogota Colombie.

B: Image scanographique montrant des lésions de la colonne vertébrale au niveau D10/D11.
La description clinique de la tuberculose vertébrale est attribuée à Sir Percival POTT qui décrivit en 1779 une pathologie associant une atteinte rachidienne cyphosante et paralysante associée à des abcès des parties molles péri-vertébrales [4].

Il a fallu attendre un siècle avant que le bacille tuberculeux soit découvert par le médecin bactériologiste allemand Robert KOCH en 1882 à la suite des travaux de Pasteur, à ce moment la tuberculose était en Europe la cause d’un décès sur sept [5].

Selon une étude de l’institut Pasteur, basée sur les souches africaines, les bacilles de la tuberculose existaient il y a trois millions d’années.

La souche initiale serait apparue en Afrique de l’est, considérée comme le berceau de l’humanité.

La maladie serait donc aussi vieille que l’humanité et son expansion à travers le monde serait intimement liée à celle de l’homme [5].
PHYSIOPATHOLOGIE
La tuberculose est due au bacille de Koch (BK) et la bactérie responsable de la TOA est le Mycobacterium tuberculosis [6].

Les TOA sont caractérisées par leur caractère pauci bacillaire, et le fait que les BK ont une multiplication lente. [4,7]

Les TOA résultent de la dissémination hématogène du BK à partir d’un foyer viscéral primitif, le plus souvent pulmonaire [8], après une durée de latence variable, habituellement courte chez l’enfant [9].

Il existe deux situations :

- Soit la dissémination du BK est ancienne et la survenue de la TOA correspond à une réactivation locale.
- Soit la dissémination du BK est récente et il existe un foyer actif à distance.

I. TOA périphérique :

L’ostéomyélite tuberculeuse provient d’une dissémination du BK par voie hématogène dans la moelle osseuse. Le BK se développe dans une zone d’os spongieux bien vascularisée. [6,10]

Plus rarement, elle se développe par contiguïté d’une tuberculose cutanée, d’une bursite ou d’une ténosynovite tuberculeuse. La prolifération granulomateuse initiale s’étend et il se développe une nécrose caséeuse avec ostéolyse. [11]

Les lésions osseuses métaphysaires peuvent atteindre l’articulation, par le biais d’une atteinte capsulaire ou par destruction du cartilage de croissance, Cela explique que la survenue :

- d’une atteinte articulaire secondaire à l’atteinte osseuse réalise souvent un tableau de type ostéo-arthrite. [11]
- Le BK atteint l’articulation par voie hématogène, directement par la membrane synoviale, ou indirectement par l’os adjacent, L’atteinte synoviale
primitive évolue lentement avec un épaississement synovial, un épanchement articulaire et la formation à la périphérie du cartilage articulaire d’un tissu de granulation formant un pannus qui érode les marges osseuses et la surface articulaire. [11]

La destruction cartilagineuse débute à la périphérie de l’articulation et les surfaces articulaires portantes sont préservées pendant plusieurs mois. [11]

II. **Tuberculose vertébrale :**

La tuberculose vertébrale est considérée comme étant, dans la plupart des cas secondaire à un infarctus osseux causé par un embole artériel tuberculeux.

L’atteinte disco vertébrale chez l’adulte se fait initialement dans la région la plus vascularisé de la vertèbre c'est-à-dire la plaque sous-chondrale antérieure du corps vertébrale. [12,13]

Chez l’enfant, en revanche, avant l’âge de 7 ans, la vascularisation du disque intervertébral par les vaisseaux perforants toujours existant dans cette tranche d’âge explique l’atteinte initiale de celui-ci, Puis l’infection s’étend à la vertèbre sus ou sous jacente [14,15]; il pourrait s’agir d’une discite pure donnant une symptomatologie fruste et évoluant généralement vers la fusion vertébrale [14].

(Fig : 2)
III. Les abcès froids :

Les abcès froids sont fréquents dans la TOA. Ils sont composés de sérum, de leucocytes, de matériel casseux, de débris osseux et de BK. Ils traversent le périoste et les ligaments et migrent dans des directions variées, en suivant les plans des fascias et les gaines des nerfs et des vaisseaux. [11]

Un abcès froid superficiel peut se fistuliser spontanément ou après ponction déclive, voire former un ulcère, ce qui peut entraîner une infection à germe banal de l’abcès et/ou de la fistule. [11]
EPIDÉMILOGIE
'Organisation Mondiale de la Santé (OMS) estime qu’un tiers de la population mondiale est infecté par le Mycobacterium tuberculosi, avec 9 millions de nouveaux cas de tuberculose par année et dont environ 1 million entre eux sont des enfants âgés de moins de 15 ans (11%), et prévoit plus de 10 millions nouveaux cas en 2025 [16,17].

Les enfants contribuent à 3-6% du nombre total des cas de tuberculose dans les pays développés et à plus de 25% de la charge de la tuberculose dans les pays en voie de développement. [18]

Au Maroc, la proportion de la forme extra-pulmonaire (TEP) était la plus élevée en 2015, avec 52% des cas, contre 48% des cas de tuberculose pulmonaire.

La tuberculose ostéo-articulaire représente 7% de l’ensemble des localisations tuberculeuses occupant ainsi le troisième rang des atteintes extra-pulmonaires après la localisation ganglionnaire et pleurale.

Figure 3 : Répartition de la TEP au Maroc, 2015. [19]
MATÉRIELS

ET MÉTHODES
Il s’agit d’une étude rétrospective descriptive et analytique des enfants atteints de tuberculose ostéo-articulaire, colligée au service de Traumatol- Orthopédie Pédiatrique du Centre Hospitalier Universitaire Hassan II de Fès, durant une période de 7 ans, notifiée entre janvier 2009 et décembre 2015 (au total 8 cas).

Pour recueillir les données concernant nos patients, nous avons eu recours aux méthodes suivantes :

Nous avons consulté tous les dossiers des enfants âgés de moins de 16 ans, et qui ont été traités pour TOA confirmée par des données anatomo-pathologiques ou sur des données anamnestiques, cliniques, biologiques et radiologiques très suggestives.

Nous avons analysé les données des examens radiologiques de chaque dossier et photographié les clichés les plus démonstratifs.

Nous avons opté pour la classification radiologique de Martini inspiré de chaussé pour les arthrites tuberculeuses (Tableau I). [20]
Tableau I : Classification radiologique des arthrites tuberculeuses selon Martini

<table>
<thead>
<tr>
<th>Stade</th>
<th>Description</th>
<th>Images radiologiques</th>
</tr>
</thead>
</table>
| I | Synovite pure
 Discrète ostéoporose epipysaire | ![Image](image1) |
| II | Atteinte osseuse débutante :
 présence d’une ou plusieurs géodes ou érosions juxta articulaire avec discrète pincement de l’interligne articulaire. | ![Image](image2) |
| III | Nombreuses géodes et érosions juxta articulaire avec important pincement de l’interligne articulaire sans déformation articulaire. | ![Image](image3) |
| IV | Atteinte destructrice complète
 avec déformation articulaire. | ![Image](image4) |
- Nous avons recherché les modalités de l’évolution à court et à moyen terme pour chaque enfant en se basant sur les critères de guérison de Dhillon. [1,6]

Pour Dhillon, il faut que les différents critères suivants soient rassemblés:

1. Disparition des signes cliniques généraux et locaux, y compris guérison des fistules.

2. Normalité de la VS.

3. Signes radiologiques de reconstruction osseuse avec ostéo-condensation, disparition des lésions ostéolytiques avec diminution de la déminéralisation locale et restauration de la trabéculation osseuse.

Nous avons classé toutes ces données sur des tableaux pour faciliter l’analyse statistique des critères choisis et indiqués à la fiche d’exploitation.

I. Les Observations Cliniques :

Observation N1 :

Enfant **D.A**, de sexe masculin, âgé de 10 ans, sans ATCD pathologiques notables, admis pour prise en charge d’une boiterie douloureuse d’allure inflammatoire initialement intermittente puis devenue permanente et invalidante, associée aux sueurs nocturnes évoluant depuis une année dans un contexte d’apyrexie et d’amaiigrissement chiffré à 4 Kg.

L’examen à l’admission trouve un patient fébrile avec boiterie d’esquive, marche pratiquement impossible sans aide, limitation douloureuse de la mobilité de la hanche droite et amyotrophie du quadriceps, le reste de l’examen somatique est sans particularité.

Devant ce tableau clinique un bilan biologique a été réalisé revenue en faveur d’une hyperleucocytose avec des GB à 15000 elm/mm³, à prédominance lymphocytaire, avec une anémie hypochrome microcytaire pour une HB à 10 g/dl, le bilan infectieux a objectifé une CRP à 90 mg/l et une VS accéléré à 100 mm/h.

La radiographie standard du bassin a objectifié une irrégularité avec condensation des berges du cotyle droit.

Un complément scannographique a été fait objectivant une géodes sous chondrale de la tête fémorale avec aspect grignoté du cotyle droit.
Figure 4 : Radiographie standard du bassin face montrant une irrégularité avec condensation des berges du cotyle droit avec lyse osseuse.

Figure 5 : TDM du bassin c+ en coupe axiale : épanchement articulaire coxo-fémoral droit avec prise de contraste périphérique.
Figure 6: TDM du bassin C+ en coupe sagittale: épanchement articulaire coxo-fémoral droit.

Figure 7: TDM du bassin en coupe axiale (fenêtre osseuse): Irrégularité des berges du cotyle droit avec lyse osseuse.
Figure 8 : TDM du bassin en coupe coronale (fenêtre osseuse): Géode sous chondrale de la tête fémorale droite.

Figure 9 : TDM du bassin en coupe coronale (fenêtre osseuse): Géode sous chondrale de la tête fémorale droite avec aspect grignoté du cotyle homolatérale.
Figure 10 : Scintigraphie osseuse montrant une hyperfixation de l’articulation coxo-fémorale droite en temps précoce et tardive.

Une biopsie synoviale avec ponction articulaire a été décidée chez elle, et a été réalisée sous anesthésie général, l’exploration chirurgicale a trouvé un épaississement de la synoviale avec un liquide visqueux ponctionné pour étude cytobactériologique.

L’examen anatomopathologique est revenu en faveur d’un remaniement inflammatoire granulomateux épithélioides et giganto-cellulaire sans nécrose caséeuse.

Un bilan phýsologique fait d’IDR, 3frottis à la recherche de BK sont revenus négatifs.

La radiographie du thorax normal était normale éliminant une localisation pulmonaire associée.
Au terme de cette étape un traitement anti bacillaire d’épreuve à 2ERHZ/10 RH a été instauré.

L’évolution a été marquée par la persistance de la fièvre, avec à l’examen une hanche chaude et douloureuse à la mobilisation, genou en flessum, donnant un psoatis.

Le bilan biologique a objectivé une hyperleucocytose à 20000 elm/mm3 à prédominance PNN, avec une CRP à 100 mg/l.

L’échographie de la hanche et du muscle psoas avait montré une ostéoarthrite de la hanche droite compliquée d’un abcès du tendon du muscle psoas , droit fémoral et pectiné d’origine spécifique.

Un drainage d’abcès a été réalisé avec une arthrotomie de la hanche, l’exploration a trouvé des grumeaux de pus avec une capsule très épaissie d’où une biopsie de la synoviale avec ponction pour étude cytobactériologique revenant négative.

Le malade a été mis sous 12 mois du traitement anti-bacillaire, les suites thérapeutiques ont été simples sans effets secondaires ni de complications.

L’évolution à long terme a été bonne.
Observation N 2 :

Patiente B.N, de sexe féminin, âgée de 11 ans, ayant comme ATCD la notion d’angine a répétition.

Admise pour prise en charge d’une boiterie avec douleur de la hanche initialement d’allure mécanique puis progressivement de type inflammatoire associée à une asthénie, anorexie et fièvre modérée fluctuante évoluant depuis 6 mois.

L’examen général trouve une patiente altérée, fébrile, avec à l’examen de l’appareil locomoteur une boiterie d’esquive, limitation douloureuse de la mobilisation de la hanche droite, alors que les autres articulations sont libres.

Le bilan biologique a montré une hyperleucocytose à 12000 elm/mm³ à prédominance lymphocyttaire avec une CRP à 30 mg/l, une VS accéléré à 130 mm/h.

La radiographie standard de la hanche a été réalisé ayant objectivé une condensation de l’épiphyse avec perte de sa sphéricité, et image lytique du cotyle droit et pincement de l’interligne articulaire (figure11):

Figure 11: Radiographie du bassin face montrant une condensation de l’épiphyse avec perte de sa sphéricité, avec image lytique du cotyle droit et pincement de l’interligne articulaire.
Un complément scannographique a été fait ayant confirmé les données de la Rx standard.

Figure 12 : TDM de la hanche objectivant un épanchement liquidien de l’articulation coxo-fémorale droite, avec une image lytique du cotyle droit et pincement.

Une arthrotomie a été réalisée, sous AG, en décubitus dorsal avec un billot sous la fesse. Incision type Hueter a été réalisée avec dissection sous cutanée, repérage du nerf fémoro-cutané. Au passage dans l’interstice couturier - tenseur du fascia lata le muscle droit ant a été récliné vers le dedans.

La capsule articulaire était fibrosée, épaissie avec une synoviale hypertrophiée, inflammée, avec un liquide synoviale jaune citrin. Le malade a bénéficié de biopsies osseuse, et synoviale.

L'examen anatomopathologique est revenu en faveur d'un granulome giganto-épithéliocellulaire avec nécrose caséeuse.
Figure 13 : Présence de multiples granulomes épithélioides et gigantocellulaires (Flèche) (HESX100).

Figure 14 : Présence de cellules géantes (Flèche) (HESX400).
Figure 15 : Présence d’un granulome composé de cellules épithélioides (Flèches) (HESX400).
Le bilan physisiologique fait était négatif, et la radiographie du thorax était normale éliminant une tuberculose pulmonaire associée (figure 16).

Figure 16 : radiographie du thorax face normal.

Au terme de ces données un traitement anti bacillaire à base de 2RHZ/7RH a été instauré, la patiente a bénéficié aussi d’une traction au lit vu la coxalgie tuberculeuse.

L’évolution a été marquée par une bonne amélioration clinique, biologique, et radiologique, sans aucune complication.
Observation N3 :

Patiente M.H, âgée de 15 ans, sans ATCD pathologique notable, admise pour prise en charge d’une boiterie d’allure inflammatoire, associés à des sueurs nocturnes évoluant dans un contexte d’apyrexie et d’amaigrissement évoluant depuis 3 mois.

L’examen trouve une patiente en assez bon état général, apyrétique.

l’examen de l’appareil locomoteur a trouvé une limitation de la mobilité de la hanche avec une raideur articulaire.

Le bilan biologique a objectivé une CRP à 67 mg/ml, VS accéléré à 90 mm/h, avec un héogramme correct.

La radiographie standard du bassin a été faite : objectivant une condensation des deux têtes fémorales, raccourcissement du col à droite, pincement de l’interligne articulaire et protrusion acétabulaire.

figure 17 : Radiographie du bassin face montrant une condensation des deux têtes fémorales raccourcissement du col à droite, et pincement de l’interligne articulaire avec début de protrusion acétabulaire.
La patiente a bénéficié d’une biopsie osseuse, synoviale, revenu en faveur d’un granulome giganto-épithélo-cellulaire avec nécrose caséuse. Le bilan phthysiologique est revenu négatif.

Figure 18 : Radiographie du thorax face sans anomalie.

Le diagnostic du tuberculose est retenu sur des critères cliniques, biologiques, radiologiques et anatomopathologiques d’où un traitement antituberculeux à base de 2RHZE/7RH avec un traitement orthopédique fait de traction durant la phase algique suivi de rééducation vu la raideur de la hanche. L’évolution était satisfaisante selon les critères de guérison de Dhillon clinique, biologique et radiologique.
Observation N 4 :

Enfant C .F de sexe masculin âgé de 8 ans, suivi en pédiatrie pour maladie cœliaque sous régime sans gluten, admise pour prise en charge des tuméfactions multiples évoluant dans un contexte de fièvre et d’AEG depuis 2 mois .

L’examen général : trouve un malade en assez bon état général ,fébrile avec deux tuméfactions rénitentes au niveau scapulaire gauche avec issu de pus ,et présence d’une tuméfaction sus claviculaire et périmaméloïnaire ainsi qu’ au niveau du coude gauche qui est chaud ,douloureux ,bloqué en flexion .

Le bilan biologique a objectivé une hyperleucocytose a 17600 elm/mm³ a prédominance PNN, CRP à 240 mg /l, avec VS accéléré à 100 mm /h.

Les examens radiologiques :objectivant des images lytiques avec déminéralisation étendue du coude .

Figure 19 : Radiographie standard du coude gauche en incidence de face et profil :
aspect lytique des os du coude ,avec déminéralisation étendue et réaction périoste du radius ,cubitus ainsi que de l’humérus.
Figure 20 : Echographie des parties molles du coude gauche : collection en regard de l’articulation du coude, hypoéchogène, hétérogène, mal limitée, non vascularisée au doppler couleur et mesurant 7 cm de grand axe en rapport avec un abcès.

La patiente a bénéficiée d’un drainage des abcès avec arthrotomie du coude Sous AG, en décubitus dorsal, Incision postérieure en regard de la tuméfaction du coude ,dissection sous cutanée qui a objectivé un os déminéralisé avec environ 100 cc de pus franc .la patiente a bénéficié d’une biopsie de l’os cubitale qui était rugueux très friable avec lavage de l’articulation au sérum salé.

La patiente a bénéficié aussi d’une autre incision en regard de l’abcès sus claviculaire avec biopsie cutanée.

L’examen anatomopathologique est revenu en faveur des larges foyers de nécrose d’allure caséeuse.

La patiente a bénéficié aussi d’un bilan phtysiologique IDR, frottis et d’une Rx du thorax qui sont revenus sans anomalies.
Figure 21 : Radiographie thoracique de face sans anomalie.

Le diagnostic de tuberculose articulaire et cutanée est retenu chez la patiente d’où un traitement par les anti-bacillaires sous le schéma 2ERHZ/10RH.

L’évolution a été marquée par l’apyrexie, et l’amélioration biologique ainsi que radiologique.
OBSERVATION N5 :

Patient de 10 ans, sans ATCD pathologique notable, admis pour prise en charge d’une tuméfaction intéressant les 2 genoux et la cheville gauche, évoluant depuis 2 mois. Chez qui l’examen trouve un patient en bon état général, apyrétique.

Le bilan biologique a montré une hyperleucocytose à 16000 elm/mm³, à prédominance PNN, avec une CRP à 20 mg/l, et une VS accéléré à 50 mm/h, ainsi qu’une anémie hypochrome microcytaire avec une HB à 9,5 g/dl.

La radiographie standard du genou a montré une ostéocondensation de l’extrémité inférieure du fémur.

Figure 22: radiographie standard du genou face et profil objectivant une ostéocondensation de l’extrémité inférieure du fémur.
Figure 23 : Radiographie de la cheville gauche sans anomalie.

Figure 24 : Scanner des genoux montrant en coupes axiales et sagittales une ostéochondrite.
Un bilan phtysiologique a été réalisé fait d'IDR est revenu fortement positif à 14mm, avec une radiographie thoracique normale.

Vu la forte suspicion clinique avec les signes d'imprégnation tuberculeuse et la positivité d'IDR, ainsi que les signes radiologique, le malade a été mis sous antibacillaire sous schéma 2RHZE/10RH.

L’évolution a été marquée par une bonne amélioration clinique, biologique et radiologique avec une guérison répondant à tous les critères de Dhillon.
OBSERVATION N 6 :

Patiente K. w , de sexe féminin, âgée de 10 ans ayant comme ATCD un contagé tuberculeux (mère traitée pour tuberculose pulmonaire), admise pour des rachialgies, associées à une anorexie, et un amaigrissement évoluant depuis 6 mois.

L’examen initial objective une patiente subfébrile à 37.9 °C, avec une boiterie et flessum du genou droit.

Le bilan biologique a objectivé : une hyperleucocyte à 12000 elm/mm³, à prédominance PNN, avec une CRP à 30 mg/l, et une VS accélérée à 78 mm/h.

La radiographie standard du rachis a objectivé un tassement vertébral cunéiforme du L3.

Figure 25 : Radiographie standard du rachis lombaire en incidence face (B) et profil (A) : tassement vertébral cunéiforme du corps vertébral du L3 avec recul du mur postérieur.
Un complément TDM du rachis a été réalisé objectivent une spondylodiscite lombosacrée avec collections pré vertébrales du muscle psoas droit et de la loge musculaire postérieure de la cuisse et extension endocannalaire.

Figure 26: TDM du rachis lombaire en coupe sagittal sans injection de PDC : Lyse des corps vertébraux de L3-L4 avec perte de l’architecture vertébrale et recul du mur postérieur.

Figure 27: TDM du bassin C+ en coupe coronale : Collection du muscle psoas iliaque droit avec extension vers les parties molles de la cuisse homolatérale, hypo dense, à paroi rehaussée après contraste en rapport avec un abcès.
Un bilan phtysiologique a été fait “revenant négatif”, avec une radiographie du thorax est revenue sans anomalies.

![Figure 28: Radiographie thoracique de face sans signe de tuberculose pulmonaire.](image)

La patiente a bénéficiée initialement d’un drainage abcès du psoas et du rachis dans un seul temps avec lavage abondant.

Au terme de ces données cliniques, biologiques et radiologiques la patiente a été mise sous anti bacillaire 2RHZE / 10RH avec corset.

Avec une bonne évolution clinique et biologique initial, puis 7 mois plus tard la malade a présenté une gibbosité lombaire sans signes rachidiens, ni radiculaire ni déficit neurologique.
Cette gibbosité lombaire a indiqué un traitement chirurgical type arthrodèse lombaire Sous AG ,en décubitus ventral sous le tronc ,Repérage de L1 sous scope et marquage par aiguille ,Incision post en regard du rachis lombaire ,Dissection sous cutanée ,Repérage des apophyses articulaires de L1- L2 L3- L4 qu’on a ruginés abord de la crête iliaque droite par la même incision ,Ruginage de la crête iliaque Prélèvement de greffon spongieux ,Arthrodèse L1- L2 ;L2- L3 ;L3- L4 ,Mep de greffon en regard des vertèbres .

Les suites post opératoires étaient simples, avec bon évolution à long terme, on note une petite cyphose angulaire sequellaire.
Observation N° 7 :

Un patient B.A, de sexe masculin, âgé de 10 ans, suivi en pédiatrie médicale pour syndrome néphrotique sous corticoïde, admis pour prise en charge des rachialgies, évoluant depuis 3 mois.

L’examen clinique a trouvé un garçon fébrile à 38°C, de moyen état général.

Le bilan biologique a objectivé une hyperleucocytose à 13300 elm/mm3 à prédominance PNN, avec une CRP 65, et une VS à 89 mm/h.

La radiographie standard du rachis a montré un pincement des espaces intervertébrales D12-L1, L1-L2.

Figure 29 : Radiographie standard du rachis lombo-sacré en incidence de face

: Pincement vertébral à la hauteur de D12-L1, L1-L2.
Un complément IRM a été réalisé et qui a objectivé un pincement en intervertébral D12-L1-L2 avec aspect d’épidurite antérieure et de compression médullaire en regard.

Figure 30:IRM cérvico- dorso lombaire en séquence sagittal T2 : aspect de spondylodiscite tuberculeuse aux étages D12- L1- L2, associé à une épidurite antérieure et une compression médullaire en regard (Hypersignal T2 de la moelle épinière).
Un bilan phtysiologique a été fait et qui est revenu normal, avec une Rx du thorax sans anomalies.

Figure 31: Radiographie thoracique de face de contenu et de contenant normal.

Une biopsie chirurgicale rachidienne a été réalisée dont l’examen anatomopathologique est revenu en faveur de la tuberculose avec GGEC.

Un traitement anti bacillaires a été instauré à base de 2RHZE/10 RH, avec une bonne amélioration initiale sur le plan clinique et biologique.

Le malade a été repris 5 mois plus tard pour une cyphose ayant bénéficié d’une arthrodèse post.

Les suites post opératoires étaient simples, avec une nette amélioration clinique, biologique et radiologique.
Figure 32 : Radiographie standard du rachis lombo sacré en incidence de profil après traitement : disparition du pincement vertébral déjà décrit sur l’ancien cliché.
Observation N8:

Enfant Y.B de sexe masculin, âgé de 6 ans, sans ATCDS pathologiques notables, admis pour prise en charge de torticolis droit, évoluant dans un contexte de fièvre, d’AEG, avec notion de frissons et de sueurs nocturne associées.

L’examen clinique trouve un patient en assez bon état général, apyrétique torticolis.

Le bilan biologique a trouvé une hyperleucocytose à 14300 elm/mm3, une CRP à 65 mg/l, et une VS accéléré à 74 mm/h.

Un bilan radiologique fait de radiographie standard et du TDM du rachis cervical avaient montré une lyse de l’arc antérolatéral du C1.

Figure 3 3: Radiographie standard du rachis cervical face et profil montrant une ostéolyse du C1.
Figure 34: coupes scannographiques axiales du rachis cervical montrant une lyse de l’arc antérolatéral gauche de C1.

Le malade a bénéficié d’une biopsie chirurgicale, Sous AG.

L’exploration trouve une lyse de lame latéral de C1 avec une infiltration de la région, Biopsie de la lame lat , avec plusieurs prélèvements pour étude anatomopathologique et bactériologique , avec hémostase assurée.

L’examen anatomopathologique est revenu en faveur d’un GGEC avec nécrose caséeuse.

Un bilan phthysologique fait revenu négatif.

La radiographie thoracique a été faite est revenue sans anomalie.

Le malade a été mis sous traitement anti-bacillaire sous schéma 2RHZE/10RH avec bonne évolution.
DISCUSSION
Données épidémiologiques :

La TOA peut toucher tous les âges [21], dans notre série l’âge moyen est de 8.25 ans rejoignant la série de Teklali et al [1] ou l’âge moyen était de 8 ans et 1 mois ainsi que Rafiki et al avec une moyenne d’âge de 7 ans et 3 mois [2].

Il n’y a probablement pas de prédominance de sexe dans la TOA, les différences observées étant probablement la conséquence de biais de recrutement.

L’étude faite par Teklali[1] confirme cette donnée avec 52% de garçons et 48% de filles même donnés ont été avancé dans la série de Marrakech dont le sexe ratio était de 1 , même chose était trouvé dans notre série.

L’absence de vaccination par le BCG est l’un des facteurs favorisants de la tuberculose de l’enfant [22].

La vaccination par le BCG doit être pratiquée dans les pays où la tuberculose continue à représenter un important problème de santé publique comme le Maroc [23,24].alors que pour la France le BCG a été remplacée par une vaccination ciblée chez les enfants à risque élevé de tuberculose [25].

Dans notre étude les 8 patients portaient la cicatrice vaccinale du BCG.

Le principal facteur favorisant la TOA est l’existence d’un antécédent de tuberculose, traitée ou non traitée [6]. Cet antécédent représente 10 à 19% dans des grandes séries de TOA [26] à savoir Taklali, Rafiki et Benbouazza.

Dans la série de Grendel et al [27], la tuberculose de l’enfant était toujours la conséquence d’une contamination par un adulte.

Cet ATCD n’a été retrouvé que chez un seul malade dans notre série soit 12.5% des cas rejoignant l’étude de Ravoatrarilandry Manjakaniaina [28] où il y avait aussi un seul cas soit 13.3% des cas.
La tuberculose des sujets immunodéprimés (VIH, diabète, corticothérapie au long cours) comporte souvent des atteintes extra-pulmonaires lors de sa réactivation ou lors d’une primo-infection.

Sur ce terrain, il s’agit souvent de tuberculose riche en BK à développement rapide plutôt que la tuberculose pauci-bacillaire à développement lent, comme elle l’est dans la TOA [6].

Dans notre série un seul malade soit 12.5% avait une TOA sur un terrain d’immunodépression suite à la prise des corticoïdes à longue durée pour un syndrome néphrotique.

Le traumatisme pourrait provoquer la réactivation de BK dormants, mais pourrait être simplement le motif de consultation et donc de découverte d’une TOA d’évolution torpide. [6]

Un antécédent traumatique au siège de la TOA a été rapporté dans de nombreuses séries à savoir Taklali, Rafiki et Pertuiset et al avec une fréquence allant de 16,6 à 35%. [1, 2, 29] alors qu’aucun cas n’a été rapporté dans notre série.

Nos malades de bas niveau socio-économique appartenaient à des familles n’ayant pas de couverture sociale, avec un revenu familial très bas et inconstant, et vivant dans un environnement de promiscuité et de précarité.

Le bas niveau socio-économique comme facteur favorisant de tuberculose a été retrouvé chez la majorité de nos patients soit 75% des cas, c’est le cas aussi dans les autres séries comme celle de Marrakech avec 68.8% des cas, ainsi que celle de Meknès avec 87.2% des cas vivant dans un environnement de précarité.

Le délai entre l’apparition des premiers symptômes et l’établissement du diagnostic positif est très variable.

Dans notre série le délai moyen de consultation était 3 mois avec des extrêmes allant de 15 jours à 12 mois rejoignant ainsi la série de Marrakech, ou le
délai de consultation a été évalué à une moyenne de 3 mois avec des extrêmes allant de 8 jours à 9 mois ainsi que l’étude d’Agarwal et al [29], ou le délai moyen était de 4,7 mois avec des extrêmes de 15 j à 14 mois alors qu’il était de 10 mois pour la série de Teklali et al [1], et de 17 mois pour Fitouri et al [30].

Ce retard diagnostic rapporté dans ces différentes séries est expliqué d’une part par la négligence du patient et d’autre part par une symptomatologie clinique peu spécifique et d’évolution lente.
Les aspects cliniques :

TOA périphérique :

La tuberculose peut atteindre toutes les articulations de l’organisme. L’atteinte est mono-articulaire dans au moins 90% des cas [31].

Cependant, 3 à 20% des formes multifocales sont rapportées [1, 2]. L’atteinte multifocale était de 12,5% dans notre étude, un patient avait jusqu’à 3 localisations (une atteinte des deux genoux associée à une atteinte de la cheville).

Les arthrites tuberculeuses prédominent aux membres inférieurs qui sont atteints dans 60 à 80% des cas rapportés dans les séries de Martini et Benbouzza et al [6, 26], comme étant le cas dans notre série ou la localisation au niveau des membres inférieurs a été objectivée dans 4 cas sur 5 cas d’ostéoarthrite périphérique soit 80% des cas.

La hanche est la première localisation chez l’enfant représentant 55% suivie du genou, dans notre étude la hanche a été atteinte dans 3 sur 5 cas d’OA périphérique soit 60% des cas suivis du genou avec un pourcentage de 20% des cas rejoignant ainsi les grandes séries de la littérature à savoir Taklali, Rafiki [1, 2].

L’arthrite tuberculeuse réalise typiquement une arthrite subaiguë ou chronique, évoluant vers l’aggravation progressive sur plusieurs semaines ou plusieurs mois.

La fréquence des retards diagnostiques explique le caractère fréquemment destructeur de l’ostéo-arthrite lors du diagnostic, ce retard est du dans notre série à la négligence des parents qui consultent pas tôt soit par manque de moyen ou par la non conscience de notre population de la gravité de cette pathologie grave, mais aussi à la non spécificité des symptômes, pour les autres séries telle que la série de Kapukaya et al, et celle de Subasi et al, il s’agit en plus de la non spécificité des
symptômes, de l’installation insidieuse des symptômes, et aussi du rôle des traumatismes mineurs qui peuvent masquer la lésion sous-jacente et retarder le diagnostic [32].

Dans la majorité des cas, le diagnostic de coxite tuberculeuse est fait à un stade tardif (stade radiologique III ou IV) [1, 2]. En ce qui concerne le genou, le diagnostic est fait le plus souvent avant la destruction articulaire, compte tenu du caractère superficiel de cette articulation, on notait aussi que l’atteinte est le plus souvent unilatérale, l’atteinte bilatérale n’a été retrouvée que dans un seul cas de TOA du genou.

La douleur et le gonflement articulaire sont les deux signes habituels, les abcès froids sont identifiables dans 20 à 25 % des cas [26].

La raideur articulaire est très fréquente. Une fistulisation à la peau est présente dans environ 15 % des cas [60]. L’amyotrophie est habituelle dans les formes chroniques, Une adénopathie satellite doit toujours être recherchée. Les signes généraux sont inconstants, le plus souvent d’importance modérée. [6]

Dans notre série les tableaux cliniques les plus prédominants sont la douleur, le gonflement articulaire, et les troubles de la marche type boiterie. Les signes généraux sont inconstants mais lorsqu’ils étaient présents, ils orientent plus le diagnostic.

Nos résultats rejoignant la littérature telle que la série de Teklali et al [1].

La TOA peut s’associer ou non à une tuberculose viscérale. Quand celle-ci est présente, elle est le plus souvent pulmonaire, plus rarement urinaire ou ganglionnaire [6].

Dans la série de Teklali et al [1], 32 localisations associées sont rapportées dont les formes pulmonaires représentent 65 %. Dans l’étude de Marrakech, la forme
Tuberculose ostéoarticulaire chez L’ENFANT

associée a été retrouvée dans 12,5%, c’est le cas dans notre étude ou un seul patient a présent une tuberculose cutané associé soit 12.5% des cas.

Les ostéites ou ostéomyélites tuberculeuses sont caractérisées par une atteinte osseuse isolée [4]. Classiquement, l’ostéite tuberculeuse était beaucoup plus fréquente chez l’enfant que chez l’adulte [6], mais actuellement, les répartitions entre arthrites et ostéites n’apparaissent pas très différentes entre adultes et enfants [4].

L’ostéomyélite tuberculeuse est habituellement une ostéomyélite chronique avec un long délai diagnostique [33,34]. Elle se manifeste par des douleurs et/ou une tuméfaction évoluant lentement vers l’aggravation [34]. Non diagnostiquée, elle se complique d’abcès des parties molles et de fistulisation, parfois se compliquant de fracture pathologique [35].
Dans la série de Teklali et al [1], les ostéites représentaient 16 % des cas, alors que dans notre série aucun cas n’a été isolée.

Tuberculose rachidienne :

Il s’agit le plus souvent d’atteinte spondylodiscale pluri-vertébrale. Les lésions prédominent chez l’enfant sur le rachis dorsal (51%), lombaire (20%), dorsolombaire (17%). Les atteintes sacrées et cervicales sont rares. [36]

Le tableau clinique est le plus souvent insidieux et non spécifique, et le diagnostic est posé tardivement dans la majorité des cas. La maladie est habituellement révélée par des douleurs rachidiennes d’allure mécanique au début puis progressivement de type inflammatoire. Les signes généraux sont inconstants et modérés,associant de manière variable asthénie, anorexie, amaigrissement, sueurs nocturnes et fièvre modérée. Un déficit neurologique (syndrome de compression médullaire ou syndrome de la queue-de-cheval) est présent dans 25 à 75% des cas. [37,38,39]
Dans la série de Xing X.Y et al [40], la douleur rachidienne était le principal motif de consultation.

Pour Fadoul et al[41], 98,7% des patients ont consulté pour des douleurs rachidiennes associées à une altération de l'état général.

Dans la série d'Eisen et al [42], la douleur rachidienne représentait 76% le déficit neurologique 57% alors que la déformation rachidienne ne présente que 23%

Dans notre série la douleur rachidienne a présenté le principal symptôme qui était retrouvé dans 2 cas sur 3 soit 66,66% des cas rejoignant ainsi les résultats de la série de Marrakech ou la douleur a été trouvé dans 2 cas sur 3 aussi des Mal de pott rapporté.
Bilan Paraclinique :

1. **Les tests immunologiques :**

Les tests de libération d’interféron gamma (IGRA) et l’intradermoréaction (IDR) visent à mettre en évidence la mémoire immunitaire suite à un contact avec une mycobactérie du complexe tuberculose.[43]

La tuberculine, antigène utilisé pour l’intradermoréaction, correspond à un concentré de culture de Mycobacterium Tuberculosis inactivé.

L’intradermoréaction est la seule technique validée de recherche de l’acquisition d’une immunité contre la tuberculose et un élément essentiel du diagnostic de tuberculose chez l’enfant.

Une réaction est jugée positive lorsque le diamètre de l’induration est supérieur à 5 millimètres.[44]

Dans notre série l’IDR était supérieure à 5mm dans 25% cela rejoignent celle de El Harim et al qui a rapporté une IDR positive dans 27,78 %des cas, contrairement a Chemlal qui a trouvé un taux de 78%.[44]

Les tests de détection de production de l’interféron gamma mettent en évidence la production d’interféron gamma par les lymphocytes T effecteurs en réponse à une stimulation par des protéines mycobactériennes spécifiques de Mycobacterium Tuberculosis.

Deux tests de dosage de l’interféron sont disponibles. Le premier test appelé « Quantiféron-TB-Gold® » qui mesure le taux d’interféron sécrété et qui est réalisé sur sang total, le deuxième appelé « T SPOT-TB® » mesure le nombre de cellules T sécrétrices et est réalisé sur les cellules mononucléées isolées du sang périphérique. [45]
Les tests IFN-γ positifs traduisent de manière indirecte la présence d’une infection tuberculeuse latente ou active. Chez les enfants en bas âge et les sujets immunodéprimés, leur sensibilité n’est pas documentée de manière certaine.

Dans la série de Lemhrari et al [46], le dosage du Quantiféron a été réalisé chez 6 cas et était positif dans 5 cas.

Dans une étude antérieure de Cho et al [47], il a été montré que la sensibilité diagnostique du test SPOT-TB est associée à la chronicité de la maladie et du site impliqué.

Aucun des patients étudiés n’a bénéficié de ces tests.

2. Bilan biologique :

2.1. Examen biologique de présomption :

Les examens biologiques sanguins ont peu de valeur diagnostique dans les atteintes Ostéo-articulaires d’origine tuberculeuse.

La VS est accélérée dans tous les cas de notre étude rejoignant les résultats de Taklali, Rafiki, ainsi que Lemaitre[1,2,46].

la CRP était positive dans 75%. Rejoignant les résultats de la série de Gbané-Koné et al [48] où la CRP était positive dans 76,54% des cas.

Dans notre étude l’hémogramme a objectivé une hyperleucocytose dans 87,5% des cas avec une lymphocytose dans 25% rejoignant les résultats de la série de Garrido et al [84] ou la lymphocytose relative a été retrouvée chez 21% des cas alors que pour Teklali a trouvé un taux de lymphocytose dans 40% des cas.

On note aussi une anémie hypochrome microcytaire inflammatoire dans 37,5% contre 13,3% pour Teklali[1].
2.2. **Examen biologique de certitude** :

- Réaction en chaîne par polymérase (PCR) :

Il existe actuellement des techniques de diagnostic rapide par la mise en évidence de l’acide désoxyribonucléique (ADN) mycobactérien par différentes méthodes de PCR comme le geneXpert, avec une sensibilité du test qui varie entre 93% et 98% et une spécificité allant de 83% à 99%.

Personne dans notre série n’a eu le recours à ces tests pour le diagnostic, comme étant le cas pour les autres séries de Teklali[1] et Rafiki[2].

3. **Bilan bactériologique** :

La TOA est caractérisée, par rapport à la tuberculose pulmonaire, par la plus faible quantité de BK, les cultures ne sont positives ici qu’après 3 à 10 semaines [6].

Dans notre étude, l’examen bactériologique direct des crachats est revenu négative chez tous nos patients, alors qu’il a été positif dans 33% des cas dans la série de Tétouane et aussi dans la série de Lemaitre et al [46].

Dans l’étude de El Bied et al [49], la recherche de BK au direct, dans le liquide articulaire était positive dans 14,5% des cas alors que dans notre série elle était toujours négative. Dans expérience de notre service les examens bactériologiques n’ont pas été contributifs au diagnostic de la TOA ; c’est le cas aussi pour Teklali et de Fitouri[1, 30].
4. **Bilan radiologique:**

4.1. **Tuberculose ostéo-articulaire périphérique :**

 a. **Les ostéo-arthrites :**

La radiographie standard reste l’examen d’imagerie de première intention dans l’exploration d’une arthrite [4].

Elle est normale au début ou peut montrer une déminéralisation des extrémités osseuses péri-articulaires associée à une tuméfaction des parties molles en regard [50].

Plus tard, on retrouve la triade classique de Phemister associant une ostéoporose juxta-articulaire, des érosions osseuses de siège périphérique et un pincement progressif de l’interligne articulaire [6]. En fait, le stade radiologique varie en fonction du stade auquel est fait le diagnostic.

Chez l’enfant, on peut observer une accélération de l’ossification des noyaux épiphysaires et surtout un aspect de migration à travers la physe d’une lésion métaphysaire, image fortement évocatrice de tuberculose articulaire [50].

Martini [4] a proposé une classification radiologique des lésions tuberculeuses en quatre stades évolutifs, celle-ci est dérivée de celle de David-Chaussé. 40% des cas étaient déjà à un stade avancé (stade III et IV) rejoignant la série de Teklali où 52% des patients avaient des lésions de stade III ou IV.

Le retard au diagnostic pourrait expliquer ces lésions avancées.

L’apport de la TDM est indéniable dans le diagnostic de la TOA [1, 2]. Elle permet une analyse fine des lésions osseuses et leur étendue (ostéolyse, ostéosclérose, périostose, séquestre), aussi, elle met en évidence des abcès des parties molles, qui peuvent contenir des calcifications évocatrices [10].

L’IRM permet une meilleure analyse des lésions osseuses et surtout des parties molles mais surtout dans le suivi d’une arthrite tuberculeuse.
b. **Les ostéites tuberculeuses :**

L’aspect radiographique de l’ostéomyélite tuberculeuse est très variable.

Les clichés simples sont presque toujours pathologiques [51]. Ils peuvent révéler : typiquement un foyer d’ostéolyse bien limité, excentré, sans condensation périphérique ; soit une zone d’ostéopénie localisée ; soit des lésions mixtes lytiques et sclérosantes évocatrices d’ostéite chronique ; un abcès centro-osseux et enfin une fracture pathologique [52]. L’aspect peut être pseudo-tumoral [6].

Pour Rafiki et al [2], les aspects radiologiques étaient toujours des images lytiques, dans notre série la radiographie a objectivé une image lytique dans 5 cas.

Une image « évocatrice » d’ostéite tuberculeuse serait l’image en « grelot » quand la géode contient un séquestre spongieux [6].

Le scanner et l’IRM restent utiles pour confirmer le diagnostic et surtout pour la surveillance.
4.2. **Tuberculose rachidienne** :

a. **Radiographie standard** :

Il s’agit souvent du premier examen prescrit, il est souvent normal au début de l’infection en raison du retard d’apparition des signes radiographiques par rapport aux signes cliniques, une destruction osseuse d’au moins 35 à 40 % est nécessaire pour être décelable. Elle se constitue en 4 à 6 semaines pour les spondylodiscites tuberculeuses.

La raréfaction du spongieux des angles antérieurs du corps vertébral et la résorption du liseré osseux sous-chondral constituent les premiers signes radiologiques de la spondylodiscite tuberculeuse [53].

À la phase d’état, le mal de pott se caractérise par des larges cavités somatiques ouvertes dans le disque, limitées par de fins liserés d’ostéocondensation et contenant des séquestres dans la moitié des cas.

Dans notre étude la radiographie standard était contributive au diagnostic chez les 3 malades objectivant un pincement discal, et des images d’ostéolyse même anomalies trouvées dans la série de Taklali et Fitouri [1, 30] ainsi que la série de Marrakech.

b. **TDM** :

Elle permet de détecter d’une manière très précise les lésions disco-somatiques à un stade précoce ou la radiologie standard apparaît normale et d’évaluer leur extension vers les tissus mous intra et péri-rachidien [12,54].

Le rôle de cet examen est important dans le guidage des ponctions et biopsies disco vertébrales ainsi que dans la surveillance post-thérapeutique [53].

Par contre le scanner n’est pas sensible dans la détection des lésions médullaires [55].

Dans notre étude les trois patients ont bénéficié d’un scanner rachidien dans les résultats étaient contributifs au diagnostic de la TOA.
c. **L’IRM :**

L’IRM tend à supplanter la TDM dans le diagnostic et le suivi de la tuberculose rachidienne. Elle permet un diagnostic de localisation précoce au stade initial dans la spondylodiscite.

L’IRM permet de déceler les abcès para-vertébraux de petite taille et l’atteinte épidurale avec son retentissement radiculo-médullaire [56].

La préservation d’un disque normal entre une atteinte somatique en miroir est évocatrice d’une spondylodiscite tuberculeuse [52].

Deux de nos patients ont bénéficié d’une IRM Rachidienne avec une meilleure étude médullaire, alors que dans l’étude de Marrakech aucun patient n’a bénéficié de cet examen.

d. **Scintigraphie osseuse:**

Elle permet le diagnostic de localisation précoce de la tuberculose et de rechercher d’autres localisations asymptomatiques ainsi que la réalisation en un temps du bilan d’extension osseux [52].

Seul un de nos patients a bénéficié cet examen, et qui a objectivé une hyperfixation de l’articulation dans les 2 temps précoce et tardif alors que dans la série de Marrakech aucun patient n’avait eu une scintigraphie osseuse ainsi que le Teklali et al.

e. **Radiographie thoracique :**

La radiographie pulmonaire est systématique en matière de TOA à la recherche d’une localisation pulmonaire associée.

Dans notre série la radiographie thoracique a été réalisée chez tous les malades est revenue sans anomalie.
5. **Données anatomopathologiques** :

Le diagnostic de tuberculose devrait être confirmé par l'isolement de *M. tuberculosis* soit lors de l'analyse histologique, soit par les cultures bactériologiques ou idéalement par les deux [1, 32]. Cependant la tuberculose osseuse étant une lésion paucibacillaire, il est souvent difficile d'isoler le germe dans les prélèvements [32].

Les prélèvements biopsiques, peuvent être réalisés sous arthroscopie ou par arthrotomie [32, 57]. La biopsie à ciel ouvert est la seule éventualité possible dans les pays en voie de développement étant que le Maroc où les plateaux techniques sont souvent très limités et ne permettent pas la réalisation courante de gestes radioguidés, mais aussi de l’arthroscopie [32].

La mise en évidence d’un granulome épithélioïde et gigantocellulaire avec nécrose caséeuse permet, devant un tableau clinique et radiologique évocateur, d’affirmer le diagnostic de TOA [58].

Pour notre série, la preuve diagnostique a été apportée par l’examen histologique de la biopsie synoviale ou osseuse dans 75% rejoignant les résultats de différents séries de Teklali et al [1], Rafiqui et al [2] et Fitouri [30] où elle varie entre 77 et 90% .

L’examen anatomopathologique reste un argument décisif en matière de tuberculose ostéo-articulaire chez l’enfant.
Diagnostic différentiel :

1. Ostéo-arthrite tuberculeuse :

Une mono-arthrite chronique doit faire discuter, outre la tuberculose, un rhumatisme inflammatoire chronique à début mono-articulaire, une forme torpide d’arthrite bactérienne à germe banal, une arthrite fungique. Les autres synovites granulomateuses à envisager sont dues à la brucellose, aux mycobactéries atypiques, à la sarcoïdose [59].

2. Tuberculose rachidienne :

Dans le mal de pott, le diagnostic différentiel se pose principalement avec les autres spondylodiscites[62] .

Le contexte clinique oriente souvent le diagnostic, mais la distinction entre une spondylodiscite tuberculeuse, brucellienne et à pyogène est parfois difficile [63].
Traitement :

Depuis l’avènement des antituberculeux, le traitement des TOA est d’abord et toujours médical et la chirurgie est réservée à certaines situations ou complications [64].

1. **Traitement antituberculeux :**

Le traitement antibacillaire précoce est très efficace et permet une restitution ostéo-articulaire ad integrum, il a été obtenu grâce à des protocoles d’association de plusieurs antituberculeux. dont quatre sont utilisés en 1ère ligne.[6]

Tableau II : Présentations des antituberculeux de première ligne

<table>
<thead>
<tr>
<th>Médicament</th>
<th>Présentation</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazide</td>
<td>Comprimé</td>
<td>150mg/50mg</td>
</tr>
<tr>
<td>Rifampicine</td>
<td>Comprimé ou gélule</td>
<td>150mg/300mg</td>
</tr>
<tr>
<td></td>
<td>Suspension orale</td>
<td>100mg</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>Comprimé</td>
<td>400mg</td>
</tr>
<tr>
<td>Streptomycine</td>
<td>Flacon à injection IM</td>
<td>1g</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>Comprimé, Comprimé disperisable</td>
<td>400mg, 100mg (pédiatrique)</td>
</tr>
</tbody>
</table>
La durée et le régime thérapeutique des TOA peuvent varier selon les pays. Dans notre pays, le programme national de lutte antituberculeuse, actualisé en 2011, recommande pour le traitement des TOA de l’enfant, un régime de douze mois comportant dans la phase initiale qui dure deux mois l’association de quatre anti-bacillaires (RHZE) puis le relais par l’association rifampicine-isoniazide pendant 10 mois.

Pour l’étude de Fitouri et al [30], la durée moyenne du traitement était de 16 mois.

Au cours de notre étude, la durée du traitement a changé (12 mois de traitement dans le nouveau protocole de santé publique, contre 9 mois avant 2011).
2. Traitement associé:

- Traitement orthopédique :

 Le repos est indispensable à la phase initiale du traitement, pour préserver la fonction articulaire et entraîner un retour rapide vers l’indolence [65]. Il est de l’ordre de quelques semaines en cas d’ostéo-arthrite tuberculeuse, et au moins trois mois en cas d’ostéite tuberculeuse [2].

 Dans les arthrites tuberculeuses, l’immobilisation articulaire en position de fonction est nécessaire dans les arthrites destructrices, mais a un intérêt purement antalgique dans les formes non destructrices. Une immobilisation prolongée peut entraîner une ankylose spontanée quand l’articulation est très détruite. Dans la coxalgie tuberculeuse, certains proposent une mise en traction précoce [65].

 La traction au lit a été indiquée chez deux de nos patients pour arthrite tuberculeuse de la hanche et dans 4 cas dans la série de Marrakech.

 La rééducation ne peut s’envisager qu’après la phase aigue et la stabilisation des lésions osseuses, elle permet de prévenir l’amyotrophie [53].

 Les patients traités précocement doivent faire une à deux heures de rééducation par jour pour entretenir la mobilité articulaire. Au membre supérieur, la rééducation doit maintenir la mobilité alors qu’au membre inférieur le but est d’obtenir la stabilité et l’indolence [65].

 La rééducation a été indiquée chez 4 patients de notre série.

 Dans la tuberculose vertébrale, les études menées sous l’égide du MRC (Medical Research Council) ont montré que l’immobilisation rachidienne systématique, que ce soit par immobilisation au lit ou par corset, ne modifiait pas le risque d’aggravation de la cyphose [65].

 L’immobilisation vertébrale est nécessaire dans les tuberculoses du rachis cervical et dans les tuberculoses compliquées de compression médullaire ou d’instabilité rachidienne [66].
L’immobilisation par corset a été indiquée chez une patiente de notre série pour une spondylodiscite lombosacrée avec bonne évolution clinique et biologique.

Chirurgie :

L’amélioration des traitements médicaux a considérablement diminué les indications thérapeutiques de la chirurgie dans les TOA [64].

La chirurgie précoce est la plus pratiquée. Elle a un double objectif : participer avec l’antibiothérapie au contrôle de l’infection tuberculeuse pour préserver la fonction articulaire et la stabilité osseuse [57].

Les gestes chirurgicaux précoces sont le drainage d’abcès des parties molles, la synovectomie chirurgicale, le débridement ostéo-articulaire avec excision de tous les tissus nécrosés (exérèse des séquestres osseux, des cavités purulentes), le curetage osseux des ostéomyélites [58].

La chirurgie « précoce » a été indiquée chez deux patients, un pour abcès fessier il a bénéficié de drainage chirurgical, et l’autre pour drainage des abcès multiple.

La chirurgie « tardive » est une chirurgie à visée fonctionnelle, de reconstruction ou de stabilisation, le choix se situe entre l’arthrodèse et la prothèse.

Elle est discutée quand l’arthrite tuberculeuse a détruit largement ou complètement l’articulation, notamment le cartilage articulaire, et qu’il s’ensuit une raideur douloureuse, avec parfois déformation et/ou instabilité, entraînant un handicap fonctionnel [65].

Comme c’est le cas chez deux malades de notre série dont l’arthrodèse a été indiqué devant la déformation rachidienne.

Donc le traitement chirurgical a été indiqué au total chez 4 malades soit 50% des cas rejoignant celle de Rafiki et al[2] ou l’indication a été posé dans 41% des cas, alors que l’acte chirurgical ne représente que 13.2% dans la série de Teklali et al[1].
Évolution et pronostic :

Le pronostic de la TOA concerner la guérison à la fin du traitement, les séquelles fonctionnelles et la mortalité.

Avant l’avènement de l’antibiothérapie, le taux de mortalité à cinq ans était d’environ 30 % [8]. Aucun décès n’a été isolé dans notre série.

On admet actuellement que le taux de guérison de la TOA correctement traitée est supérieur à 90 % Il n’existe pas de définition consensuelle des critères de guérison de la TOA [65].

Pour Dhillon [33], il faut que les différents critères suivants soient rassemblés : disparition des signes cliniques, généraux et locaux, y compris guérison des fistules, normalité de la VS, signes radiologiques de reconstruction osseuse avec ostéocondensation, disparition des lésions ostéolytiques avec diminution de la déminéralisation locale et restauration de la trabéculation osseuse. Les mêmes critères ont été retenus par Teklali et al [1] chez l’enfant. Nous avons admis les mêmes critères pour préjuger de la guérison.

Il faut tenir compte le fait que les images radiologiques s’améliorent très lentement, sur plusieurs mois même sous traitement efficace. [65].

Pour affirmer avec certitude la guérison définitive, une durée de suivi de 5 ans semble nécessaire.

Le pronostic fonctionnel, c’est-à-dire l’évaluation des séquelles, doit être envisagée différemment selon que la TOA est vertébrale ou extra- vertébrale.

1. **Tuberculose extra vertébrale** :

Les séquelles fonctionnelles de la TOA sont liées au retard du diagnostic et de la thérapeutique. Chez l’enfant, l’atteinte du cartilage de croissance peut entraîner un raccourcissement ou une déformation angulaire d’un membre [8].
Le pronostic fonctionnel est plus mauvais chez l’enfant, malgré un traitement médical et éventuellement chirurgical [8].

Dans notre série, 5 patients étaient suivis à moyen terme avec un délai moyen de 17 mois. Le pronostic fonctionnel semble meilleur pour 4 patients, alors qu’un patient a gardé une légère raideur de la hanche.

2. **Tuberculose vertébrale** :

L’évolution à long terme est fonction de l’importance des lésions disco-vertébrale au moment où le traitement est institué.

Dans les formes vues et traitées précocement, la guérison se fait avec restitution ad integrum [53].

Les principales complications de la spondylodiscite tuberculeuse sont la compression médullaire et la cyphose.

Les déficits neurologiques au cours des spondylodiscites tuberculeuses sont habituellement symétriques et d’installation progressive.

La paraplégie pottique évolue en général favorablement sous traitement médical [67].

La cyphose est la conséquence des spondylodiscites ayant détruit plusieurs corps vertébraux, elle est plus grave chez l’enfant et touche avec prédilection la charnière dorsolombaire et le rachis lombaire [68], son importance est appréciée cliniquement par la flèche et radiologiquement par l’angle de Cobb [53].

Un patient de notre série a présenté une cyphose angulaire dorsale séquellaire après 1an du traitement. Dans la série d’Aison et al [42] à propos de 21 cas, 5 enfants ont gardé une déformation rachidienne, pour Arcelis et al [67] 6 enfants sur 10 avaient une cyphose séquellaire.

Il faut préconiser un suivi jusqu'à la fin de la croissance chez l’enfant atteint de mal de pott [42,69].
Récidive et rechute :

Pouvant survenir n’importe quand au cours de la vie, leur véritable fréquence à long terme est mal documentée [8]. Pertuiset [53] a avancé un taux de récidive de 2 à 5 % au cours des 20 années suivant le traitement.

La récidive est liée à la persistance de BK dormants et est favorisée par de multiples facteurs: Corticothérapie, malnutrition, diabète, déficit immunitaire, geste chirurgical ou traumatisme local.

Aucun cas de récidive ou de rechute n’a été rapporté dans notre étude.
Prévention :

La prévention de la tuberculose reste une priorité de santé publique de par le monde. Elle fait face à de nouveaux défis en particulier l’émergence des formes de M. tuberculosis multi résistantes et la progression de l’infection par le VIH.

1. Prophylaxie active:

Le BCG est un vaccin vivant provenant d’une souche de Mycobacterium bovis, ce vaccin produit une immunité de surinfection comparable à celle acquise lors de la primo-infection.

La vaccination BCG des nouveau-nés est obligatoire au Maroc. Elle fait partie du programme national d’immunisation.

L’intérêt du BCG est de protéger les jeunes enfants contre les formes généralisées et graves de tuberculose, notamment la méningite et la miliaire tuberculeuse.

La Chimio prophylaxie [70], a pour but d'éviter le passage de la tuberculose infection à la tuberculose maladie chez les enfants récemment infectés par le bacille tuberculeux.

La chimioprophylaxie est une mesure de prévention à appliquer généralement aux enfants sains non vaccinés par le BCG et vivant au contact d'une source de contamination :
Les indications de la chimio prophylaxie antituberculeuse

- Nouveau né sans signes cliniques et ou radiologiques évocateurs de tuberculose, et dont la mère présente :
 - Tuberculose pulmonaire contagieuse ou
 - Tuberculose pulmonaire récente (moins de 3 mois) ou
 - Tuberculose pulmonaire aigue ou
 - Tuberculose utérine en fin de grossesse.
- Nourrisson de mère tuberculeuse et avec IDR positive et absence de signes cliniques et ou radiologiques évocateurs de tuberculose.
- Sujet vivant avec VIH avec absence de signes cliniques ou radiologiques évocateurs de tuberculose évolutive.
- Sujet atteint d’une maladie chronique sous corticoïde ou Immunosuppresseurs.
- Sujet avec maladie sous anti TNF a.

Figure 35 : montrant les indications de chimio prophylaxies antituberculeux.
2. **Prophylaxie passive [71]:**

La tuberculose continue d'imposer un lourd tribut à notre population. Une organisation rationnelle de lutte antituberculeuse est la seule méthode permettant de faire obstacle à l'extension de cette maladie.

En 1991, le Maroc a introduit la stratégie DOTS (Directly Observed Treatment Strategy) avec le support de l'OMS.

Le Maroc a adopté cette stratégie qui prône la consolidation des acquis de la stratégie DOTS et s’attaque à d’autres défis notamment la coïnfection/VIH, la tuberculose pharmaco-résistante et l’accès universel à des diagnostics de qualité et à des traitements centrés sur le patient.

Pour traiter l'élimination de la maladie, la lutte contre la tuberculose doit être organisée grâce à la mise en place de programmes rigoureux et à l'application d'un ensemble de mesures de prises en charge, comprenant en particulier:

- Le dépistage et la détection des sources de contamination dans la collectivité.
- Leur traitement rapide par une chimiothérapie prolongée les rendant non contagieux et permettant d'assurer leur guérison définitive.
- Un système d'information standardisée qui permet d'évaluer les résultats des interventions et de contrôler leur efficacité.
- L'amélioration des conditions de vie.

Tous ces facteurs contribuent à faire diminuer l'incidence de la tuberculose et, par voie de conséquence, des tuberculeuses ostéo-articulaires. Ainsi le traitement de base reste le traitement préventif.
RECOMMANDATION
La tuberculose ostéo-articulaire est en recrudescence au cours des dernières années. A travers cette étude et celles de la littérature, nous proposons les recommandations suivantes:

- Renforcer les mesures de dépistage de la tuberculose et notamment des formes ostéo-articulaires.
- Penser au diagnostic de TOA devant toute arthrite ou ostéoarthrite traînante et porter le diagnostic au stade précoce afin d’éviter des retards de diagnostic pourvoyeurs de complications fonctionnelles.
- Une lutte antituberculeuse efficace évitera la survenue de la TOA.
- Une collaboration multidisciplinaire est nécessaire pour améliorer la proportion de cas de TOA extra-rachidienne diagnostiqués et mieux définir les critères de guérison.
- La majorité des experts recommandent une durée minimale d’antibiothérapie antituberculeuse de 12 mois en cas de TOA.
- Effectuer un suivi et une surveillance réguliers des malades sous traitement antituberculeux jusqu’à la guérison.
- Réaliser des enquêtes rapides et actives dans le milieu des malades atteints de tuberculose en général.
- Utiliser un logiciel informatique pour enregistrer les données détaillées des nouveaux cas de TOA dans les CDTMR.
- Établir une stratégie pour la lutte contre la tuberculose au niveau de la région en développant les ressources humaines et matérielles nécessaires pour le contrôle de cette maladie et la limitation de sa propagation.
CONCLUSION
La tuberculose demeure actuellement l’une des pathologies infectieuses les plus répandues et causant le plus de décès au niveau mondial. C’est un véritable problème de santé publique surtout au dans les pays en voie de développement notamment le Maroc. La tuberculose pulmonaire reste la plus connue et sur elle que se sont axés tous les programmes nationaux de lutte, car restant la forme de dissémination et de contagion de la maladie. Depuis quelques décennies, Les tuberculoses extra-pulmonaires connaissent un regain d’intérêt en raison d’une augmentation inexplicable de leur fréquence relative, surtout dans les pays pauvres où elle pose un sérieux problème de santé publique et dont la tuberculose ostéo-articulaire fait partie, cette forme est très dangereuse peut laisser des séquelles ostéo-articulaires parfois sévères. Elle est responsable d’un grand polymorphisme anatomo-clinique, ce qui fait que le clinicien doit savoir y penser pour ne pas la méconnaître.

Son traitement reste un des plus beaux fleurons des acquisitions de la médecine contemporaine et repose sur une poly-chimiothérapie antituberculeuse, les effets secondaires sont fréquents et plus sévères chez les immunodéprimés.

Malgré l’engagement public, la gratuité de la prise en charge des cas de tuberculose surtout thérapeutique, l’incidence annuelle demeure élevée, imposant une révision de la stratégie de la prise en charge afin de lutter contre l’émergence de souches multi résistantes qui constitue le problème majeur de la lutte antituberculeuse, cette stratégie doit donner une importance surtout aux mesures préventives qui peuvent garantir une diminution de l’incidence de cette pathologie, se basant particulièrement sur la vaccination par le BCG et l’amélioration des conditions de vie des populations à risques.
RÉSUMÉS
La tuberculose ostéo-articulaire (TOA) est une pathologie en recrudescence avec très peu de publication concernant cette localisation chez l’enfant. L’objectif de notre étude est de sortir avec une recommandation à travers notre série et notre recherche bibliographique.

Patients et méthodes : Nous avons étudié rétrospectivement les dossiers de 8 enfants hospitalisés pour une tuberculose ostéo-articulaire dans le service de chirurgie traumatologie pédiatrique du CHU HASSAN II de Fès durant une période de 7 ans (2009-2015). Les critères de guérison que nous avons adoptés étaient la disparition de la douleur et de l’inflammation clinique et biologique, ainsi que la stabilisation ou l’amélioration des lésions radiologiques.

Résultats : Nous avons inclus 4 filles (50%) et 4 garçons (50%) avec un âge moyen de 8.25 ans, et d’un niveau socio-économique faible dans 75 % des cas. Tous les patients avaient reçu le BCG à la naissance, un patient avait une notion de contagion familial (12.5%). Le délai moyen de consultation était de 3 mois. La tuberculose vertébrale représente 37.5%, les 62.5% restantes sont des ostéoarthrites, l’ostéite isolé n’a pas été rapporté dans notre série. Un cas avait une tuberculose multifocale (12.5%) et un patient avait une tuberculose cutanée associée (12, 5%). L’IDR à la tuberculine a été réalisée chez tous les patients et a été positive chez 2 patients soit 25%. L’immunodépression a été retrouvée chez un enfant vu la prise de corticoïdes. La recherche de BK a été négative sur tous les prélèvements, Le diagnostic a été confirmé histologiquement dans 75%. La radiographie standard a été réalisée chez tous les patients, la lyse osseuse et le pincement interarticulaire étaient les principaux aspects radiologiques, complétée par une TDM chez 5 cas permettant une meilleure analyse des lésions, une IRM a été demandé chez deux
enfants, la radiographie thoracique demandée systématiquement chez tous les patients, était sans anomalie dans tous les cas. Tous les patients ont été traités selon le protocole national de lutte contre la tuberculose. Le traitement chirurgical était indiqué chez 4 enfants : Drainage des abcès chez 2 enfants, une arthrodèse postérieure chez deux patients un pour cyphose dorsal et l’autre pour gibbosité lombaire. Deux patients avaient présenté des séquelles orthopédiques, secondaire à une atteinte articulaire.

Toute douleur osseuse de l’enfant doit inciter tout médecin à penser au diagnostic de la TOA et de réaliser un bilan radiologique. La présence de lésion non caractéristique pose l’indication d’une TDM voir une IRM. Les prélèvements bactériologiques, la biopsie osseuse ainsi que la PCR (polymerase chain reaction) reste incontournable devant toute suspicion de TOA. La scintigraphie osseuse doit être réalisée pour rechercher des foyers infra-cliniques. Le traitement repose sur une poly chimiothérapie pendant 12mois (2RHZE/10RH). Le suivi des patients doit être envisagé jusqu’à la fin de la croissance.

Conclusion : Notre étude souligne la gravité de cette localisation tuberculeuse qui peut être une source d’handicap fonctionnel chez l’enfant, d’où la nécessite d’un diagnostic et d’une prise en charge précoce.
Abstract:

Osteoarticular tuberculosis is a disease on the rise with very little advertising of this localization in children. The aim of our study is to come out with a recommendation through our series and our literature search.

Patients and Methods: We retrospectively reviewed data of 8 patients hospitalized with osteoarticular tuberculosis in the pediatric trauma surgery department of the Hospital Hassan II for a period of 8 years (2009-2015). Cure criteria we adopted were the disappearance of pain and clinical inflammation, and the stabilization or improvement of radiological lesions.

Results: We included 4 girls (50%) and 4 boys (50%) with a mean age of 8.25 years, a low socioeconomic was found in 75% of cases. Every patient had received BCG at birth, and only one patient had a history of tuberculosis (12.5%). The mean delay in presentation was 3 months. Osteoarthritis accounted for the majority of sites 65.2% followed by spinal tuberculosis represented only 37.5%. One case had multifocal bone tuberculosis (12.5%), another one had a visceral associated Tuberculosis (12.5%). Mantoux skin test was performed in 8 patients and was positive in 2 patients. Immunodeficiency was found in one case, the BK research was negative throughout the levy. The diagnosis was confirmed histologically in 6 cases (75%), the X-ray was performed in all patients, bone lysis was the main radiological appearance, completed by CT in 5 cases allowing better analysis of the lesions, MRI was requested in 2 cases, the chest x-ray systematically sought in all patients. All patients were treated according to the national protocol fight against TB. Surgical treatment was indicated to 4 children. 2 patients had orthopedic sequelae, secondary to a joint disease for 1 child. Any child bone pain should prompt any doctor thinking about diagnosis of TOA and make a radiological assessment.

Mlle. EL KHAYARI Maryame
presence of uncharacteristic lesion arises indicating a TDM or an MRI. Bacteriological samples, bone biopsy and PCR (polymerase chain reaction) remains essential in the diagnosis of TOA. Bone scan should be performed to search for subclinical lesion. Treatment is based on combination chemotherapy for 12 months (2RHZE / 10RH). Patient follow-up should be considered until the end of growth.

Conclusion: Our study emphasizes the gravity of this tuberculosis localization which can be a source of functional disability especially for children, hence the need for early diagnosis and care for an early recovery.
تعريف

تعرّف مرض العظم المنفصل على ارتفاع في الآونة الأخيرة مع وقاية ليل من المقاطعات.

توجهت سنة لي مهما هذا الوضع.

هذا الوضع لأساليب لاستخدام المقلّطات بيئة ثمان حالاتنا بإقياسًا ببالس العظمي، والتي وضعها في جناح علاج للأطفال، المستشفى الجامعي، الحسن الثاني بϕ، وذلك لم تمتلكا في الفئات العربية والأوروبية واستقرار نقص العظام الإشعاعي.

نتائج

تم استدانتفتيت 4 (50%)، 4 أولاد (50%)، مع توسط عمر 7 سنوات، 75% منهم بحالة شفاء، وجدنا في جميع الوسائل للاختبارات 3 أشكال منفصلة بقياس 62.5%، في حالة إيجابية متصل غرفة التدبير، ونتقل أسرابهم العناية وعزل عصبية الرئة وعند طفلك، وتم تشخيص نقص المنشئة مرة واحدة عبر أطلال أحد الأعراض التهابية في أي طفائلاً. في حين تأكد التشخيص النسيجي في 75%. تسق يمج כי العلاقة بين الاستخدام المضى في الأشعة مركبة مع إعطاء مكافحة مبكرة. في حين يحمل الوعي في 12 سنة، بإيجابيًا بعد الفحص حتى نهاية اليوم.

خاتمة: ارتكبنا كخطير عن هذا المرض السرير، لذا يمكن أن يكون حلاً قاعداً للاطفال، حيث إستنتج تشكيلة وصفاً بكون.
ANNEXES
Tuberculose ostéoarticulaire chez L’ENFANT

Thèse N°:260/17

Mlle. EL KHAYARI Maryame

87
Tuberculose ostéoarticulaire chez L’ENFANT

Mlle. EL KHAYARI Maryame

Tuberculose associées :

- oui ☐
- non ☐

Si oui : Pulmonaire ☐ Ganglionnaire ☐ méningée ☐ Cutanée ☐

Antécédent familiaux :

Contage tuberculeux :

- oui ☐
- non ☐
- inconnu ☐

Cas similaire dans la famille :

- oui ☐
- non ☐

Examen générale :

- T° :
- Poids :
- ADP périphérique :
 - oui ☐
 - non ☐
- Localisation tuberculeuse :
- Siège d’atteinte :
 - Uni-focale ☐
 - Multifocale ☐
- Rachis :
 - Cervicale ☐
 - Dorsale ☐
 - Lombarre ☐
- Articulation :
 - Hanche ☐
 - genou ☐
 - cheville ☐
 - Épaule ☐
 - coude ☐
 - Poignet ☐

Autres :

Atteinte d’os long :

Atteinte d’os plat :

Examen locorégionale :

- Tumeur articulaire ou du membre déficit neurologique :
- Douleur à la pression osseuse raideur articulaire :
- Fistule cutanée amyotrophie :
- Luxations articulaire :
- Autres signes :

………...
Bilan biologique :

- IDR à la tuberculine : positive [] négative []
- NFS :
- VS :
- CRP :
- Sérologie HIV : positive [] négative []
- Dosage des immunoglobulines :
- Bilan bactériologique :
 - Recherche de BKD : positive [] négative []
 - Ponction articulaire
 - prélèvement du pus
 - BK crachat
 - Tubage gastrique
 - ponction d’ADP superficielle
 - BKC : positive [] négative []

Bilan Radiologique :

- RX standards :
- Echographie articulaire :
- TDM, IRM :
- Scintigraphie osseuse :
- Biopsie osseuse ou synoviale :
- Rx thorax :

Traitement instauré :

- Traitement anti bacillaire :
 - Protocole :
 - Durée :
- Traitement orthopédique :
- Traitement chirurgical :
Evolution

- Evolution à court terme :
 - Disparition des signes locaux et généraux : oui [], non []
 - Normalité VS : oui [], non []
 - Reconstruction osseuse : oui [], non []

- Evolution à moyen terme :
 - Favorable [], Moyenne [], Défavorable []

- Séquelles :
 ..
 ..
BIBLIOGRAPHIE
1. TEKLALI Y, FELLOUS EL ALAMI Z, EL MADHI T, GOURINDA H, MIRI A.

La tuberculose ostéo-articulaire chez l’enfant (ma de pott exclu) : à propos de 106 cas.

2. RAFIKI K, YOUSRI B, ARIHI M, BJITRO C, ABOUMAAROUF M, EL ANDALOUSSI M.

Unusual locations of osteo-articular tuberculosis in children: A report of 12 cases.

3. DUTAU G.

The History of Tuberculosis.

4. MARTINI M.

La tuberculose ostéo-articulaire.

6. PERTUISET E.

Peripheral bone and joint tuberculosis.

7. JELLIES JE.

Bacterial infections: bone and joint tuberculosis.

8. TULI SM.

General principles of osteoarticular tuberculosis.

9. LACUT JY, DUPON M, PATY MC.

Tuberculose extrapulmonaire Revue et possiblités de diminution du délai d’intervention thérapeutiques.
10. VUYST DE D, VANHOENACKER F, GIELEN J, BERNAERTS A, SCHEPPER DE AM.

Imaging features of musculoskeletal tuberculosis.

11. PERTUISET E.

Tuberculose ostéo-articulaire extravertébrale.

12. Pertuiset E.

Tuberculose vertébrale de l’adulte.

13. ZAMIATI W. JIDDANE M. ELHASSANI MR. CHAKIR N. BOUKHRISI N.

Apport du scanner spiralé et de l’IRM dans la spondylodiscite tuberculeuse.

J.neuroradiol. 1999;26:27- 34.

14. LOUBES –LACROIX F. GOZLAN A. COGNARD C. MANELFE C.

Imagerie diagnostique de la spondylodiscite tuberculeuse.

EMC, 2004;31- 335- A- 10.

15. MABIALA BABELA J. MAKOSSO E. NZINGOULA S. SENG P.

Aspects radiologiques du Mal de Pott chez l’enfant: à propos de 92 cas.

18. STOP TB PARTNERSHIP CHILDHOOD TB SUBGROUP, WORLD HEALTH ORGANIZATION:

19- SERVICE DES MALADIES RESPIRATOIRES/ DELM , 01 mars 2013.

20- DEBUISSON G ET AL.

21. MONACH PA, DAILY JP, RODRIGUEZ- HERRERA G, SOLOMON DH.

Tuberculous osteomyelitis presenting as shoulder pain.

22. GROUPE DE TRAVAIL DU CONSEIL SUPERIEUR D’HYGIENE PUBLIQUE, FRANCE.

Particularités de la tuberculose pédiatrique.

23. MILSTIEN JB, GIBSON JJ.

Quality control of BCG vaccine by WHO: a review of factors that may influence vaccine effectiveness and safety.

24. TREBUCQ A.

La lutte contre la tuberculose dans le monde : résultats et défis.

Med Trop 2004;64:587—94.s

BCG et nourrissons à risque de tuberculose: étude de couverture vaccinale à Marseille après la levée d’obligation.

Archives de Pédiatrie 2010;17:1510-1515.

Les aspects diagnostiques de la tuberculose ostéo-articulaire. Analyse d’une série de 120 cas identifiés dans un service de rhumatologie.

27. GENDREL D ET AL.

28. RAVOATRARILANDY MANJAKANIAINA.

29. AGARWAL A, AKHTAR QURESHI N, AZAM KHANS, KUMAR P, SAMAIYAET S.

Tuberculosis of the foot and ankle in children.

30. FITOURI Z, BRAHIM K, MATOUSSI N, AISSA S, ESSADDAM L, CHEOUR M ET AL.

Tuberculose ostéo-articulaire (TOA) chez l’enfant.

Archives de Pédiatrie 2010;17:1-178.

31. GARRIDO G, GOMEZ-REINO JJ, FERNANDEZ-DAPICA P, PALENQUE E, PRIETO S.

A review of peripheral tuberculous arthritis.

33. DHILLON MS, NAGI ON.

Extraspinal tuberculosis: tuberculosis of the foot and ankle.

34. BA- FALL K, NIANG A, NDIAYE AR, LEFEBVRE N, CHEVALIER B, DEBONNE JM ET AL.

Une épaule douloureuse révélant une tuberculose osseuse inhabituelle.

Rev Pneumol Clin 2009;65:13—5

35. HOSALKAR HS, AGRAWAL N, REDDY S, SEHGAL K, FOX EJ, HILL RA.

Skeletal tuberculosis in children in the western world: 18 new cases with a review of the literature.

36. RAYMOND F. LEVARD G. BATAILLE B.

Tuberculose osseuse sacrée chez une enfant de six ans.

37. GARG RK, SOMVANSHI DS.

Spinal tuberculosis: a review.

38. KETATA W, REKIK W K, AYADI PH, KAMMOUN S.

Les tuberculoses extra-pulmonaires.

39. BOZZOLA E ET AL.

Paediatric tubercular spinal abscess involving the dorsal, lumbar and sacral regions and causing spinal cord compression.
Le Infezioni in Medicina, n. 3, 220-223, 2013.

40. XING X- Y, YUAN H- S.

Imaging and differential diagnosis of pediatric spinal tuberculosis.
Radiology of Infectious Diseases (2015).

41. FEDOUL B, CHAKOUR K, EL FAIZ CHAOUI M.

Le mal de Pott: à propos de 82 cas.
Plan african Medical Journal.2011 ;8 :229

42. EISEN S, HONYWOOD L, SHINGADIA.D, NOVELLI S.

Spinal tuberculosis in children.

43. GUILLET-CARUBAA C , MARTINEZB V, DOUCET- POPULAIREA F.

Les nouveaux outils de diagnostic microbiologique de la tuberculose maladie.
La Revue de médecine interne 35 (2014) 794–800.

44. BILLY A C, LEVY- BRUHLB D.

Vaccin BCG et place de l’intradermoréaction en 2006.
45. MCNERNEY R, MAEURER M, ABUBAKAR I, MARAIS B, MCHUGH TD, FORD N, ET AL.

Tuberculosis diagnostics and biomarkers: needs, challenges, recent advances, and opportunities.

J Infect Dis 2012; 205: S147—58.

46. Lemaitre F, Damade R, Pouchot J, Barge J, Boussougant Y, Vinceneux P.

50. CARBONNELLE B, ROUSSELET MC.

Diagnostic biologique de la tuberculose.

51. VOHRAR R, KANG HS, DOGRA S, SAAGAR RD, SHARMA R.

Tuberculous osteomyelitis.

52. BOUSSEL L, MARCHAND B, BLINÉAU N, PARISÉT C, HERMIER M, PICAUD GP ET AL.

Imagerie de la tuberculose ostéo-articulaire articulaire.

J Radiol 2002; 83: 1025-34.

53. CHELLI BOUAZIZ M, LADEB M.F, CHAKROUNÉ M, CHABNANE S.

Imagerie de la tuberculose rachidienne.

54. MAFTAH M. LMEJJATI M. MANSOURI A. ELABBADI N. BELLAKHDAR F.
 Mal de pott à propos de 320 cas.
 Médecine du Maghreb, 2001; 90:111-114

55. TEO ELHJ. PEH WCG.
 Imaging of tuberculosis of the spine.

56. HAJJI K.
 Imagerie en coupe des spondylodiscites tuberculeuses : À propos de 81 cas et
 revue de la littérature, thèse de médecine Marrakech, 2008, N°90.

58. Ssen Rabesalama, Randrianirina A, Razafimanjato NNM, Rakotoarijaona A,
 Razafimahandry HJC, Rakoto-Ratsimba HN. La tuberculose ostéoarticulaire
 extravertébrale à Madagascar: à propos de 37 cas. Médecine d'Afrique
 noire. 2013;60(15):241-246

59. GRIFFITH JF, KUMTA SM, CHUNG LEUNG P, CHENG JC, CHOW LT, METREWELI C.
 Imaging of musculoskeletal tuberculosis: a new look at an old disease.

60. BABHULKAR S, PANDE S.
 Extraspinal tuberculosis: unusual manifestations of osteoarticular
 tuberculosis.

61. KEMICHE F.
 La tuberculose ostéo-articulaire durant la période 1980-1994 (à propos de
 120 cas) [mémoire de DIS en rhumatologie], 86p.
 Université Paris V: Faculté de médecine Cochin-Port-Royal; 1994-1995.

62. NASSAR I ET AL.
 Tuberculose de l’arc vertébral postérieur.
Tuberculose ostéoarticulaire chez L’ENFANT

63. MOORE SL, RAFII M.
 Imaging of spinal tuberculosis.

64. MONACH PA, DAILY JP, RODRIGUEZ- HERRERA G, SOLOMON DH.
 Tuberculous osteomyelitis presenting as shoulder pain.

65. PERTUISET E.
 Traitement médical et chirurgical de la tuberculose ostéoarticulaire.

66. MABIALA- BABELA J.R, SAMBA- LOUAKA C, ETOKABEKA- MKANTA F, SENGA P.
 La tuberculose cervicale chez l’enfant : à propos de six observations.

67. FULCO SANTOS FC ET AL.
 Bone tuberculosis: a case report on child.

125. SIMON SCHAAF H, DONALD P R, AND VLOK JV.
 Spinal tuberculosis in children a report of a complicated case.
 Illustrative case histories chapter 96.

68. ANIL K JAIN, RAVI SREENIVASAN, R MUKUNTH, AND ISH KUMAR DHAMMI.
 Tubercular spondylitis in children.

69. ABOUDA M ET AL.
 Prévention de la tuberculose.
 Revue de Pneumologie clinique (2014)

70. PLAN NATIONALE D’ACCELERATION DE LA REDUCTION DE L’INCIDENCE DE LA
 TUBERCULOSE 2013- 2016. MAROC

71. ALIMUDDIN Z, RAVIGLIONE M, HAFNER ET VON REYN C.
 Current concept: tuberculosis.