TETRALOGIE DE FALLOT
(A propos de 55 cas)

THESE
PRESENTEE ET SOUTENUE PUBLIQUEMENT LE 05/04/2012

PAR
M. EL YANDOUZI ABDELMALIK
Né le 17 Janvier 1986 à Nador

POUR L'OBTENTION DU DOCTORAT EN MEDECINE

MOTS- CLES :
Fallot - Cyanose - Malaise - Shunt

JURY
M. HIDA MOUSTAPHA... PRESIDENT
Professeur de Pédiatrie
M. ATMANI SAMIR... RAPPORTEUR
Professeur de Pédiatrie
M. BOUABDALLAH YOUSSEF..
Professeur de Chirurgie pédiatrique
M. HARANDOU MUSTAPHA..
Professeur d’Anesthésie réanimation
M. OULDIM KARIM... JUGES
Professeur agrégé de Génétique
M. EL KOUACHE MUSTAPHA.. MEMBRE ASSOCIE
Professeur assistant d’Anatomie
PLAN
INTRODUCTION .. 9

RAPPEL ... 11
 I- Historique .. 12
 II- Embryologie ... 15
 A- Embryologie cardiaque normale .. 15
 B- Embryogenèse de la tétralogie de Fallot .. 18

ANATOMIE PATHOLOGIQUE .. 19
 A- La sténose pulmonaire ... 21
 B- La communication inter-ventriculaire ... 22
 C- Le chevauchement de l’aorte ... 22
 D- L’hypertrophie ventriculaire droite .. 22
 E- Anomalies associées ... 23

PHYSIOPATHOLOGIE .. 25
 I- Les troubles hémodynamiques ... 26
 II- Les troubles hématologiques ... 28

PATIENTS ET METHODES ... 29

RESULTATS .. 51
 I- Difficultés et limites de l’étude ... 52
 II- Etude Epidémiologique .. 52
 A- Répartition Géographique .. 52
 B- Age ... 53
 C- Sexe ... 54
 D- Niveau socio-économique ... 55
 E- L’année de recrutement .. 56
 III- Facteurs étiologiques .. 57
 A- Consanguinité .. 57
 B- Antécédents ... 58
VI- Étude clinique ... 59
 A- Age de début des symptômes ... 59
 B- Circonstances de découverte .. 60
 C- Signes cliniques .. 61
 D- Signes physiques ... 63

V- Examens Paracliniques ... 66
 A- Radio thorax ... 66
 B- Électrocardiogramme .. 67
 C- Échocardiographie et Doppler ... 68
 D- Biologie ... 73
 E- Angioscanner ... 74
 F- IRM et Angiographie .. 74
 G- Caryotype .. 74

VI- Evolution spontanée ... 75
 A- Décès ... 75
 B- Complications ... 75
 C- Recul ... 75

VII- Traitement ... 76
 A- Traitement médical .. 76
 B- Traitement chirurgical ... 77
 a) chirurgie palliative ... 78
 b) chirurgie curative ... 78

VIII- Evolution après chirurgie .. 80
 A- Après chirurgie palliative .. 81
 B- Après chirurgie curative ... 81

DISCUSSION ... 84

I- ÉPIDEMIOLOGIE .. 85
A- fréquence de la TF ... 85
B- Répartition géographique .. 86
C- Age de découverte .. 86
D- Sexe .. 87
E- Couverture sociale ... 88

II- ETHIOPATHOGENIE ... 88
A- Les facteurs environnementaux ... 88
B- Les facteurs génétiques ... 89

III- MANIFESTATIONS CLINIQUES ... 95

IV- EXAMENS PARACLINIQUES ... 98
A- L’échocardiographie .. 98
1- Diagnostic post-natal .. 98
2- Diagnostic anténatal .. 105
B- Radiographie du thorax ... 106
C- Electrocardiogramme ... 108
D- Examens biologiques .. 109
E- Angiographie- cathétérisme cardiaque 110
F- Angioscanner ... 113
G- Imagerie par Résonnance Magnétique 118

V - Formes cliniques ... 121
A- Fallot rose ... 121
B- Tétralogie avec agénésie de la valve pulmonaire 121
C- Tétralogie avec absence de septum infundubulaire 121
D- Atrésie pulmonaire à septum ouvert (avec communication inter ventriculaire) ... 122

VI- L’évolution spontanée ... 125

VII- Complications ... 126
VII- TRAITEMENT ... 128
 A- Traitement médical .. 128
 B- Chirurgie palliative .. 132
 C- Chirurgie curative .. 138
 D- Cathétérisme interventionnel ... 150
IX- L’évolution immédiate après chirurgie ... 151
 A- Après chirurgie palliative ... 151
 B- Après chirurgie curative ... 152
X- L’évolution lointaine après chirurgie .. 155
 A- Après chirurgie palliative ... 155
 B- Après chirurgie curative ... 155
 a) Comportement fonctionnel ... 155
 b) Insuffisance pulmonaire résiduelle .. 156
 c) La sténose pulmonaire résiduelle ... 156
 d) Communication inter-ventriculaire résiduelle 157
 e) Les troubles de la conduction .. 158
 f) Les troubles du rythme ... 159
 g) La mortalité tardive ... 161
C- Modalité de surveillance des malades opérés d’une TF chez l’adulte .. 162
CONCLUSION ... 163
RESUME ... 167
BIBLIOGRAPHIE ... 173
LISTE DES ABREVIATIONS

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accr</td>
<td>Accroupissement</td>
</tr>
<tr>
<td>Ann Ao</td>
<td>Anneau Aortique</td>
</tr>
<tr>
<td>Ann pulm</td>
<td>Anneau pulmonaire</td>
</tr>
<tr>
<td>Ao</td>
<td>Aorte</td>
</tr>
<tr>
<td>AP</td>
<td>Artère pulmonaire</td>
</tr>
<tr>
<td>APD</td>
<td>Artère Pulmonaire Droite</td>
</tr>
<tr>
<td>APG</td>
<td>Artère Pulmonaire Gauche</td>
</tr>
<tr>
<td>APSO</td>
<td>Atrésie Pulmonaire à Septum Ouvert</td>
</tr>
<tr>
<td>ATCD</td>
<td>Antécédents</td>
</tr>
<tr>
<td>BAV</td>
<td>Bloc Auriculo-ventriculaire</td>
</tr>
<tr>
<td>BB</td>
<td>Bêtabloqueur</td>
</tr>
<tr>
<td>BBD</td>
<td>Bloc de Branche Droit</td>
</tr>
<tr>
<td>BPM</td>
<td>Battement Par Minute</td>
</tr>
<tr>
<td>CC</td>
<td>cardiopathies congénitales</td>
</tr>
<tr>
<td>Cc</td>
<td>Cure complète</td>
</tr>
<tr>
<td>CDD</td>
<td>Circonstance De Découverte</td>
</tr>
<tr>
<td>CEC</td>
<td>Circulation extracorporelle</td>
</tr>
<tr>
<td>CHU</td>
<td>Centre hospitalier universitaire</td>
</tr>
<tr>
<td>CIA</td>
<td>Communication inter auriculaire</td>
</tr>
<tr>
<td>CIV</td>
<td>communication interventriculaire</td>
</tr>
<tr>
<td>CMG</td>
<td>Cardiomégalie</td>
</tr>
<tr>
<td>Coarc</td>
<td>Coarctation de l'aorte</td>
</tr>
<tr>
<td>Cy</td>
<td>Cyanose</td>
</tr>
<tr>
<td>Dc</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>DDS</td>
<td>Date de Début des Symptôme</td>
</tr>
<tr>
<td>Dif alim</td>
<td>Difficulté alimentaire</td>
</tr>
<tr>
<td>DN</td>
<td>Détresse Néonatale</td>
</tr>
<tr>
<td>DR</td>
<td>Détresse respiratoire</td>
</tr>
<tr>
<td>DS</td>
<td>Déviation standard</td>
</tr>
<tr>
<td>Dys</td>
<td>Dyspnée</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogramme</td>
</tr>
<tr>
<td>F</td>
<td>Féminin</td>
</tr>
</tbody>
</table>
FC : Fréquence Cardiaque
FOP : Foramen Ovale Perméable
Gche : Gauche
Gd : Grand
Gmax : Gradient Tranvalvulaire Maximum
GR : Globule Rouge
HAD : Hypertrophie Auriculaire Droite
Hg : Hémoglobine
Hippoc : Hippocratisme
Ht : Hématocrite
HTA : Hypertension Artérielle
HVD : Hypertrophie ventriculaire droite
IAo : Insuffisance aortique
IC : Insuffisance cardiaque
ICT : Indice cardiothoracique
IEC : Inhibiteur de l’Enzyme de Conversion
Infun : infundubulaire
IP : Insuffisance pulmonaire
IRM : Imagerie par résonnance magnétique
IVA : artère inter ventriculaire antérieure
M : Masculin
MA : Malalignement
Microdel : Micro délétion
Nbre : Nombre
Néo : Néonatal
NFS : Numération de la formule sanguine
NYHA : New York Heart Association
O2 : Oxygène
OD : Oreillette droite
OG : Oreillette gauche
PA : Poids Actuelle
PCA : Persistance du Canal Artériel
PM : Péri membraneuse
PN : Poids de naissance
RSP : Retard staturo-pondéral
RVPA : Retour veineux pulmonaire anormal
Sa O2 : Saturation Sanguine en Oxygène
Sd : Syndrome
SMC : Scanner Multi-Barrette
SP : Sténose pulmonaire
SSP : Souffle de Sténose Pulmonaire
T18 : Trisomie 18
T21 : Trisomie 21
TAP : Tronc de l’Artère Pulmonaire
TCMH : Teneur Corpusculaire Moyenne en Hémoglobine
TF : Tétralogie de Fallot
TM : Temps-Mouvement
TTT : Traitemen
VCI : Veine cave inférieure
VD : Ventricule droit
VG : Ventricule gauche
VGM : Volume Globulaire Moyen
INTRODUCTION
La tétralogie de Fallot est la plus fréquente des cardiopathies congénitales cyanogènes ; elle associe comme son nom l’indique quatre anomalies :

- Une communication inter-ventriculaire
- Une sténose pulmonaire
- Une Aorte à cheval sur le septum inter-ventriculaire
- Une hypertrophie du ventricule droit

Cette cardiopathie congénitale, dont la sévérité est variable, a bénéficié des progrès considérables de la médecine durant ces cinquante dernières années. En effet si d’une part, les techniques d’imagerie médicale de plus en plus perfectionnées offrent une meilleure approche anatomique permettant ainsi d’adapter au mieux le geste chirurgical correcteur, l’amélioration des techniques d’anesthésie et de circulation extra-corporelle quant à elles autorisent des gestes chirurgicaux encore plus complexes mais de plus en plus précis et efficaces.

Actuellement, le dépistage de la tétralogie de Fallot, se fait à un âge jeune et même en anténatal, dans les pays développés. Ce dépistage précoce permet une correction chirurgicale précoce qui peut aboutir à une guérison définitive.

Après un bref rappel des généralités concernant cette cardiopathie congénitale et à travers une étude rétrospective de 55 observations colligées dans le service de pédiatrie CHU Hassan II Fès; nous avons essayé d’étudier le profil de cette cardiopathie.

Les objectives de notre travail sont :

v Etude du profil épidémiologique, clinique et paraclinique de la tétralogie de Fallot.

v Mettre le point sur les différentes modalités thérapeutiques et leurs indications.

v Aspects évolutifs et les complications de la maladie avant et après traitement.
RAPPEL
I- Historique :

L’étude de l’historique de cette maladie est intéressante, car elle permet de mieux comprendre l’évolution des indications chirurgicales. Parmi tant d’autres, quelques dates marquent l’évolution des idées et des techniques opératoires :

- En 1671, soit plus de deux siècles avant FALLOT, le danois Nils STENSEN publie le premier cas de tétralogie de Fallot, en décrivant lors d’une autopsie l’association « d’une cloison ventriculaire perforée, d’une artère pulmonaire rétrécie, et d’une aorte naissant des deux ventricules à la fois ».

- En 1749, SENAC fait la relation entre la cyanose et l’existence à l’autopsie de communications anormales entre les cavités du cœur. Ce fait est ensuite confirmé par nombre d’auteurs du 19ème siècle, en particulier par Elie GINTRAC dans sa thèse de 1814, puis par SCHIZENBERGER qui avait publié en 1861 dans la gazette de Strasbourg, une description très précise de cette malformation.

- Il faut cependant attendre la série d’articles d’Arthur FALLOT (Figure N°1) en 1888, pour assister au début du démembrement de ce qu’il appelait à l’époque « la maladie bleu ». En effet il publiait dans six numéros consécutifs du Marseille Médical en décrivant « une véritable série de lésions, une véritable tétralogie anatomo-clinique ». Depuis la maladie est connue dans le monde entier sous son nom.

- Aux alentours de 1940, l’utilisation chez l’homme des explorations Hémodynamiques (COURNAUD et RANGES en 1941, MAC MICHEL 1944) et des explorations angiocardiographiques (CASTELLANOS, PEREIRAS et ANGELO GARCIA 1937), ce qui a permis une confirmation du diagnostic clinique et le bilan préopératoire des lésions anatomiques.

- En 1945, Alfred BLALOCK et Helen TAUSSIG, en s’appuyant sur ces descriptions si précises mettent au point une technique palliative à cette cyanose, comprenant une anastomose une anastomose directe entre l’artère sous Clavière et l’artère pulmonaire homolatérale.
- En 1954, grâce à l’avènement de la circulation extracorporelle, KIRKLIN tente la première correction complète. Mais c’est véritablement LILLEHEI, la même année, qui mit au point la chirurgie curative de la tétralogie de Fallot.
- En 1957, LILLEHEI associé à WARDEN essayent de perfectionner la technique de chirurgie curative et proposent l’élargissement par plastie de l’infundibulum.
- En 1959, c’est à nouveau KIRKLIN qui soulève la nécessité d’éviter l’obstacle résiduel sur la voie de sortie du ventricule droit en utilisant la plastie transannulaire infundibulo- pulmonaire.
- En 1965, D.C.RASTELLI utilise pour la première fois un conduit entre le ventricule droit et l’artère pulmonaire dans la forme sévère de Fallot avec atrésie pulmonaire.

Les progrès de la correction de la tétralogie de Fallot furent ensuite en constante évolution, permettant de plus en plus d’abaisser l’âge de la cure chirurgicale, et surtout, d’améliorer la survie et la qualité de vie des patients porteurs de tétralogie de Fallot.
Figure N°1: Etienne- Louis Arthur Fallot [1]
II- Embryologie :

La connaissance de l’embryologie cardiaque est extrêmement utile d’un point de vue pratique, pour comprendre l’anatomie et la physiologie des cardiopathies congénitales, dont la tétralogie de Fallot qui fait partie du vaste cadre des malformations conotroncales.

A- Embryologie normale :

D’origine mésodermique, la formation du cœur est extrêmement précoce. L’ébauche cardiaque apparaît dès la troisième semaine de vie intra-utérine soit bien avant les autres appareils. En effet pendant les deux premières semaines, l’embryon ne possède ni cœur ni système circulatoire, les besoins métaboliques se font par simple diffusion.

Notons que dès ce stade (début de la troisième semaine de vie intra-utérine), le tube cardiaque rectiligne possède deux segments prédéterminés, auriculaire et ventriculaire (Figure N°2). Avant la fin de la troisième semaine va se former la boucle cardiaque, stade majeur du développement dont le bon déroulement, en particulier la convergence des voies d’éjection et d’admission, est absolument nécessaire pour que l’alignement des différents segments du cœur se forme de façon correcte (Figure N° 3).

Pendant la quatrième semaine, les ventricules se développent et la septation cardiaque débute. Les arcs aortiques et les grandes veines systémiques commencent également leur formation. D’autre part c’est à ce moment que débute la circulation sanguine qui à ce stade se fait en série et non en parallèle comme dans le cœur définitif (car la septation cardiaque n’est pas achevée et le canal atrio-ventriculaire fait communiquer uniquement la partie gauche de l’oreillette commune avec le futur ventricule gauche).
Pendant la cinquième semaine se poursuit la septation cardiaque, celle-ci étant intimement liée d’une part à la formation des valves auriculo-ventriculaires et d’autre part au développement du système de conduction.

Ces modifications se poursuivent pendant la sixième et la septième semaine (fin de la septation ventriculaire, et du développement des arcs aortiques).

Le développement cardiaque est en règle achevé à la huitième semaine de vie intra-utérine (10 semaines d’aménorrhée), la maturation des systèmes artériel et veineux, ainsi que celle des valves auriculo-ventriculaires et semi-lunaires, se poursuivant ensuite pendant les quatre premiers mois de grossesse.[2] [3] [4]
Figure N°2 : Représentations schématiques de vues ventrales à
22 et 24 jours [2]

Figure N°3 : Plicature cardiaque en vue latérale [2]
B- Embryogenèse de la tétralogie de Fallot :

L’anomalie fondamentale dans la genèse des différentes malformations de la tétralogie de Fallot est le déplacement antérosuperieur et à droite, de degré variable, du septum conal, qui sépare normalement les chambres de chasse ventriculaire droite et gauche.

Ce septum conal déplacé, vient ainsi obstruer la voie d’éjection pulmonaire, et crée un rétrécissement à la sortie du ventricule droit appelé : sténose infundubulaire pulmonaire, et crée une large communication interventriculaire par « mal alignement ».

L’aorte, située derrière le septum conal, l’accompagne et surplombe partiellement le ventricule droit. Elle chevauche donc le septum interventriculaire à des degrés divers.

Quant au quatrième élément décrit par Fallot, il résulte évidemment de la surcharge de pression du ventricule droit, secondaire à la sténose pulmonaire mais aussi à l’adaptation du ventricule droit aux pressions systémiques, d’où l’appellation : « HVD d’adaptation ».[3] [5]
ANATOMO- PATHOLOGIE
Les quatre éléments qui caractérisent la tétralogie de Fallot sont :

1. Sténose pulmonaire,
2. Communication inter ventriculaire,
3. Chevauchement de l'aorte
4. Hypertrophie ventriculaire droite,

Seuls les deux premiers sont fondamentaux alors que le chevauchement de l'aorte et l'hypertrophie du ventricule droit en sont plus ou moins des conséquences.

(Figure N°4)

Figure N° 4 : schéma illustrant les quatre points cardinaux de la TF [47]
La sténose infundubulaire est un élément constant. Elle est essentiellement musculaire, mais peut être complétée par un anneau fibreux. Trois types anatomiques sont décrits : (figure N°5)

- une sténose infundubulaire basse avec une chambre infundubulaire large en aval ; la valve pulmonaire est alors souvent normale ;
- une sténose infundubulaire distale avec valve souvent sténosée
- un infundibulum long et hypoplasique se terminant par un anneau valvulaire pulmonaire hypoplasique.

La sténose valvulaire pulmonaire s'observe dans deux tiers des cas. La valve est souvent bicuspidie. L'artère pulmonaire principale est souvent hypoplasique ou présente une sténose (« triple sténose » sous-valvulaire, valvulaire et supra valvulaire).[6] [7] [8]

Rarement, on peut observer l'absence de l'artère pulmonaire gauche.

Figure N° 5: sténose valvulaire (A), sténose de l’anneau pulmonaire (B), sténose du tronc de l’artère pulmonaire (C)
B- Communication inter ventriculaire :

La communication interventriculaire est large et en général unique, haut située. Le plus souvent, elle est de type péri membranaeuse et sous- aortique. Bordée par le septum trabéculé, le corps central fibreux, le septum infundubulaire déplacé (mal alignement), elle est coiffée par l'aorte. Une seconde communication, musculaire, est parfois observée.[6] [10]

C- Chevauchement de l'aorte :

Le chevauchement de l'aorte résulte d'un « mal alignement » entre le septum infundubulaire et le septum trabéculé. Il s'accompagne d'une rotation de la racine de l'aorte qui amène le sinus de Valsalva non coronarien plus en avant et le sinus de Valsalva coronarien droit vers la gauche.

Le chevauchement est de degré variable ; il peut être minime ou atteindre 50 % voire plus. Il s'agit alors de formes de passage vers le ventricule droit à double issue. La continuité mitroaortique est cependant conservée dans la tétralogie de Fallot. [6] [11]

D- L'HYPERTROPHIE VENTRICULAIRE DROITE :

Elle est constante et semble être purement réactionnelle, traduisant anatomicquement l'élévation des pressions intraventriculaires secondaires au barrage pulmonaire. Pour d'autres, l'hypertrophie pourrait être en partie congénitale avec une épaisseur variable de la paroi infundubulaire.

Quelle qu'en soit son origine, la masse du ventricule droit à cause de l'hypertrophie, est quasiment toujours équivalente à celle du ventricule gauche.

Notons par ailleurs que cette hypertrophie ventriculaire droite peut s'accentuer de façon considérable si la sténose valvulaire est serrée, ce qui entraîne une majoration de la sténose infundubulaire. [3] [5] [7]
E- Anomalies associées : [6] [12]

F L’arc aortique est à droite dans 25 % des cas. Les vaisseaux de la gerbe aortique ont alors le plus souvent une distribution en « miroir » et il n'y a pas d'anneau vasculaire.

F Les anomalies des artères coronaires sont fréquentes (un tiers des cas) et importantes pour le chirurgien (Figure N°6). Les plus significatives sont une artère interventriculaire antérieure naissant de l'artère coronaire droite (5 %) et une artère coronaire unique.

F La communication interauriculaire peut être présente et certains parlent alors de « pentalogie de Fallot ». La simple perméabilité du foramen ovale est bien plus fréquente.

F Les collatérales aortopulmonaires sont moins fréquentes que dans l'atrésie pulmonaire à septum ouvert.[6] [12]
Figure N°6: Anomalie de naissance et de trajet des artères coronaires : [7]

A. L’interventriculaire antérieure (IVA) naît de la coronaire droite et croise l’infundibulum à la partie haute.

B. IVA double. L’inférieure naît de la coronaire droite et la supérieure petite est en position normale.

C. Artère infundibulaire haute de gros calibre sur l’infundibulum.

D. Ostium coronaire unique antérieur (très rare)
PHYSIOPATHOLOGIE
I- Les troubles hémodynamiques :

Les principales caractéristiques physiopathologiques de la tétralogie de Fallot sont : La surcharge de pression du ventricule droit, l’hypoperfusion pulmonaire et le shunt droit-gauche VD-Ao .[6]

a) La surcharge de pression :

Il existe une surcharge de pression modérée du ventricule droit, responsable de son hypertrophie. La communication interventriculaire étant non restrictive, les pressions systoliques sont identiques dans le ventricule gauche, le ventricule droit et l'aorte. La surcharge ventriculaire droite reste donc modérée et il n'y a pas donc de risque d'insuffisance cardiaque.

Le ventricule gauche n'est pas soumis à une surcharge mais plutôt à une insuffisance de pré charge. [5]

b) L'hypoperfusion pulmonaire :

Elle est la conséquence de la sténose pulmonaire. Son importance dépend du degré de l'obstacle sur la voie pulmonaire et de la circulation collatérale.

c) Le shunt droite-gauche :

Le shunt droite-gauche est la caractéristique physiopathologique principale de la tétralogie de Fallot. Le degré du shunt est tributaire avant tout du degré de la sténose pulmonaire et, dans une moindre mesure, de la résistance systémique.

La sténose pulmonaire a toujours une composante musculaire, son degré peut donc varier en fonction de plusieurs paramètres.

D'abord, la sténose a tendance à s'aggraver avec l'âge. Ainsi, la cyanose s'installe en général progressivement au cours de la première année de vie, n'étant souvent pas présente à la naissance. Ensuite, la sténose infundubulaire peut varier
sous l'effet de la fréquence cardiaque et de la force de contraction myocardique, toutes deux sous l'influence du système nerveux autonome. Le shunt droite-gauche augmente donc à l'effort et lors d'émotions.

La crise hypoxique, complication classique de la tétralogie de Fallot, a pour cause principale un spasme de l'infundibulum, fermant l'accès à la circulation pulmonaire. Une baisse des résistances systémiques peut également être le facteur déclenchant d'une telle crise. En effet, l'aorte chevauchant le ventricule droit, une hypotension artérielle ou une baisse de la résistance périphérique favorisent le shunt droite-gauche, du ventricule droit vers l'aorte.

Le rôle que peut jouer la résistance systémique apparaît encore dans une autre manifestation typique de la tétralogie, à savoir l'accroupissement (squatting). Le fait de replier les jambes sur l'abdomen augmente en effet quelque peu la résistance systémique et diminue ainsi le shunt droite-gauche.
II- Les troubles hématologiques :

Secondaires à un état d’hypoxie chronique, les troubles hématologiques liés à la TF sont principalement des anomalies de la numération de la formule sanguine et des facteurs de coagulation.

La polyglobulie presque constante est d’autant plus intense que la cyanose et l’hypoxie sont importantes et anciennes. De plus, elle est souvent entretenue par une carence martiale en particulier chez le nourrisson chez qui l’alimentation liquide pauvre en fer est mieux acceptée. Cette polyglobulie s’accompagne progressivement d’une augmentation des taux sanguins d’hémoglobine et d’hématocrite. Quand l’hématocrite dépasse les 65% et que le taux d’hémoglobine est supérieur ou égal à 20g/dl, la viscosité sanguine est alors très augmentée.

Cette hyperviscosité expose d’une part, à la survenue de thromboses notamment cérébrales (complications dramatiques de la TF « vieillie »), et d’autre part à une diminution du débit cardiaque donc de la perfusion tissulaire. Il s’installe alors le cercle vicieux suivant :

```
Hypoxie tissulaire

Diminution du débit Cardiaque
```

```
Polyglobulie

Hyperviscosité sanguine
```

L’organisme réagit à cette hypercoagulabilité en diminuant les facteurs sériques de la coagulation (V et VIII) et en réduisant le taux de plaquettes ou en altérant leur fonction. Si la polyglobulie est importante et évolue depuis plusieurs années, les anomalies de coagulation sont constantes. Il y a alors un «équilibre délicat » entre l’hyperviscosité sanguine qui favorise les thromboses vasculaires et les anomalies de la coagulation qui favorisent les accidents hémorragiques.
PATIENTS ET METHODES
Ce travail est basé sur une étude rétrospective portant sur 55 Cas de tétralogie de Fallot colligés entre le 1er janvier 2008 et le 31 décembre 2011 au service de pédiatrie du CHU HASSAN II de Fès.

Tous nos malades ont bénéficié d’un examen clinique complet avec la radiographie pulmonaire, l’échocardiographie et plus ou moins l’électrocardiogramme et de l’angioscanner.

Tous les malades sont suivis au service de pédiatrie par Professeur ATMANI.

Nous avons pris un diagnostic par Échographie cardiaque comme principal critère d’inclusion et en éliminant les autres étiologies de cardiopathies cyanogènes (transposition des gros vaisseaux, RVPAT…)

A travers cette étude et à la lumière des données de la littérature, on va essayer d’analyser le profil épidémiologique, étiopathogénique, clinique, paraclinique, thérapeutique et évolutif de la Tétralogie de FALLOT dans notre service.

Pour atteindre ces objectifs une fiche d’exploitation (voire fiche d’exploitation) a été établie avec saisie des données sur tableau d’Excel (voire tableaux récapitulatifs de nos malades).
Tetralogie de fallot

Fiche d’exploitation

Fès, le…………………

IDENTITE :

Nom : .. Prénom : .. M □ F □ Sexe :

Date de naissance :/....../…………… Nombre fratrie :

Vaccination :

Profession du père : Mutualiste :

Profession de la mère :

Origine :

Père : Mère : Habitant :

MOTIF DE CONSULTATION :

ATCD/ :

Familiaux :

Consanguinité :

Myopathie : Marfan

Cardiomyopathie : Ischémie : dyslipidémie

Aberration chromosomiques : Interactions

Miel de système :

Valvulopathie

RAA :

Autres :
Parents :

<table>
<thead>
<tr>
<th>Mère</th>
<th>Age</th>
<th>Pathologie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Père</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd père</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd mère</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oncles et autres :
Frères et sœurs :
1) 2)
3) 4)
5) 6)

ATCDs personnels :

Grossesse :
Fièvre :
Eruption :
Prise médicamenteuse :
Ictère :
TA :
Alcool :
Tabac :
Oreillons :
Glycémie :
Sérologie :
Toxo :
Rubéole :
TPHA/VDRL :
Radiographie :
Date d’exposition :
Autres incidents :

Période néonatale :
Accouch :
Cyanose :
Apgar :
Détresse respiratoire :
Autres :
CLINIQUE :

Poids de naissance : (DS) ; taille : (DS) ; PC : (DS)
Poids actuel : (DS) ; taille actuel : (DS) ; PC actuel : (DS)

Signes fonctionnels :
- Début des symptômes (âge) :
- Difficulté alimentaire :
- Retard pondéral et/ou statural :
- Dyspnée :
- Cyanose :
- Malaise :
- Douleur thoracique :
- Dysphonie :
- Autres :

Signes physiques :
- T° :
- Fce cardiaque :
- SaO2 sans oxygène :
- SaO2 sous oxygène (1/min) :
- Pouls TA SatO2

<table>
<thead>
<tr>
<th>Pouls</th>
<th>TA</th>
<th>SatO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memb Sup Dt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memb Sup Gche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memb Inf Dt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memb Inf Gche</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tête Dysmorphie faciale : Fente labiale et ou palatine :
Mains et membres :
Malformation évidente :
- Digestive :
- Osseuse :
 - Oculaire :
 - Urogénital :
- Autres :
Ex neurologique :

Développement psychomoteur :

Sourire : Assis :

Debout : Marche : Parole :

Retard mental : Autre :

Ex cardiaque :

<table>
<thead>
<tr>
<th>Pouls</th>
<th>Ample</th>
<th>Diminué</th>
<th>Abolit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memb Sup Dt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memb Sup Gche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memb Sup Dt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memb Inf Gche</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TVJ :

Auscultation :

Ex abdominal :

Hépatomégalie :

Splénomégalie :

Auscultation :

Ex pleuro pulmonaire :

Déformation thoracique : Râles :

Sx de lutte :

Hippocratisme :

Autres :

Ex Ostéo-articulaire :
PARACLINIQUE

Biologie :

Calcium :
Urée :
Créatinine :
Na: K:
VS:
CRP:
ASLO:
Hémogramme:
Hb:
VGM:
TCMH:
PNN:
GB:
Lymph:
PLQ :
Sérologies :
Autres :

Radio pulmonaire :

ICT :
Arc moyen gauche :
Vascularisation pulm :

ECG :

Rythme sinusal : oui non
Axe : normal droit gauche
Hvd : oui non
Had : oui non
Trouble de conduction : oui non
Autres :

Echographie cardiaque

Malalignement : (%)

Siège de CIV :

Taille de CIV:

Civ multiple : oui non
Sténose infundubulaire : oui non
Sténose de la valve pulmonaire : oui non
Sténose sus valvulaire : oui non

Tronc de artère pulmonaire :

Artère pulmonaire : droite: gauche :

Anneau pulmonaire :

Anneau aortique :

Gradient de pression transvalvulaire pulmonaire :

Insuffisance pulmonaire : oui non grade =
Insuffisance tricusppide : oui non grade =
Insuffisance aortique : oui non grade =
Insuffisance mitrale : oui non grade =

Arc aortique : droit gauche

Persistance du canal artériel : oui non
Coronaires en place : oui non
C.I.A : oui non

Dilatation du VD : oui non

Autres :

Conclusion :

Echo abdominale :

Angioscanner :

Autres :
Génétique :

Avis :

Caryotype :

Autres :

Bilan métabolique :

TRAITEMENT :

TRAITEMENT MEDICAL :

Oxygène : oui non

Diurétique : oui non

Potassium : oui non

Digitalique : oui non

IEC : oui non

Bêta bloquant : oui non dose : durée :

Antibiotique : oui non

Corticoïde : oui non

Intubation / Ventilation : oui non

Dobutamine : oui non

Cordarone : oui non

TRAITEMENT CHIRURGICAL :

Palliative : (Blalock taussig) : droit gauche

Diamètre Gore- tex :

Age de réalisation :

Cure complète : oui non

Indication :

Age de réalisation :

Geste chirurgical :
EVOLUTION:

Date du dernier control : ……………………

Jamais opéré :

- Décès : oui
- Cyanose : ………………………..
- Sa o2 : ………………………..

Cure palliative :

- date :
- âge :
- Décès : oui
- Persistance des signes cliniques : oui
- Lesquelles : …………………………………………………………
- ECG :
- Echocardiographie :

Cure complète :

- date :
- âge :
- Décès : oui
- Persistance des signes cliniques : oui
- Lesquelles : …………………………………………………………
- ECG :
- Echocardiographie :

Recul
<table>
<thead>
<tr>
<th>Cas</th>
<th>Année</th>
<th>Age actuel</th>
<th>Age du Dc</th>
<th>sexe</th>
<th>Origine</th>
<th>mutualiste</th>
<th>CDD</th>
<th>consanguinité</th>
<th>fratrie</th>
<th>âge mère (ans)</th>
<th>ATCD fami partic</th>
<th>ATCD Personnels particuliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010</td>
<td>2 ans</td>
<td>7 mois</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>29</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>2</td>
<td>2011</td>
<td>16 ans</td>
<td>12 ans</td>
<td>F</td>
<td>Taounate</td>
<td>non</td>
<td>dyspnée+fatigue</td>
<td>non</td>
<td>4</td>
<td>38</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>3</td>
<td>2010</td>
<td>3 ans</td>
<td>8 mois</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>malaise anoxique</td>
<td>non</td>
<td>0</td>
<td>32</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>4</td>
<td>2011</td>
<td>4 ans</td>
<td>3 ans</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>31</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>5</td>
<td>2012</td>
<td>2 mois</td>
<td>2 mois</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>23</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>6</td>
<td>2011</td>
<td>4 ans</td>
<td>3 ans</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>1</td>
<td>28</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>7</td>
<td>2009</td>
<td>5 ans</td>
<td>3 ans</td>
<td>F</td>
<td>Fès</td>
<td>oui</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>29</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>8</td>
<td>2010</td>
<td>2 ans</td>
<td>3 mois</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>malaise anoxique</td>
<td>non</td>
<td>0</td>
<td>21</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>9</td>
<td>2011</td>
<td>6 mois</td>
<td>15 jours</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>2</td>
<td>25</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>10</td>
<td>2009</td>
<td>15 ans</td>
<td>10 ans</td>
<td>F</td>
<td>Meknès</td>
<td>non</td>
<td>cyanose</td>
<td>2ème degré</td>
<td>3</td>
<td>35</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>11</td>
<td>2011</td>
<td>3 ans</td>
<td>3 ans</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>2</td>
<td>25</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>12</td>
<td>2011</td>
<td>7 ans</td>
<td>1 an</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>3ème degré</td>
<td>2</td>
<td>31</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>13</td>
<td>2010</td>
<td>_</td>
<td>1 an</td>
<td>F</td>
<td>Meknès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>3</td>
<td>38</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>14</td>
<td>2010</td>
<td>3 ans</td>
<td>1 an</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>malaise anoxique</td>
<td>1er degré</td>
<td>3</td>
<td>33</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>15</td>
<td>2011</td>
<td>_</td>
<td>10 jours</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>2</td>
<td>23</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>16</td>
<td>2010</td>
<td>1 an</td>
<td>4 mois</td>
<td>M</td>
<td>Meknès</td>
<td>non</td>
<td>malaise anoxique</td>
<td>non</td>
<td>0</td>
<td>21</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>17</td>
<td>2010</td>
<td>8 ans</td>
<td>8 ans</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>10</td>
<td>40</td>
<td>Diabète maman</td>
<td>non</td>
</tr>
<tr>
<td>18</td>
<td>2010</td>
<td>3 ans</td>
<td>3 ans</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>cyanose</td>
<td>1er degré</td>
<td>0</td>
<td>30</td>
<td>Diabète maman</td>
<td>non</td>
</tr>
<tr>
<td>19</td>
<td>2009</td>
<td>3 ans</td>
<td>2 ans</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>dyspnée+fatigue</td>
<td>non</td>
<td>1</td>
<td>18</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>20</td>
<td>2010</td>
<td>5 ans</td>
<td>4 ans</td>
<td>F</td>
<td>Fès</td>
<td>oui</td>
<td>malaise anoxique</td>
<td>non</td>
<td>2</td>
<td>26</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>21</td>
<td>2009</td>
<td>4 ans</td>
<td>1 an</td>
<td>F</td>
<td>Meknès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>23</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>22</td>
<td>2011</td>
<td>6 ans</td>
<td>9 jours</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>40</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>23</td>
<td>2010</td>
<td>3 ans</td>
<td>2 ans</td>
<td>M</td>
<td>Meknès</td>
<td>non</td>
<td>malaise anoxique</td>
<td>non</td>
<td>2</td>
<td>30</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>24</td>
<td>2009</td>
<td>2 ans</td>
<td>4 mois</td>
<td>M</td>
<td>azrou</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>3</td>
<td>35</td>
<td>CCC chez cousin paternel</td>
<td>non</td>
</tr>
<tr>
<td>25</td>
<td>2009</td>
<td>3 ans</td>
<td>1 an</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>30</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>26</td>
<td>2010</td>
<td>1 an</td>
<td>2 mois</td>
<td>M</td>
<td>Meknès</td>
<td>non</td>
<td>malaise anoxique</td>
<td>non</td>
<td>4</td>
<td>35</td>
<td>Diabète maman</td>
<td>infection néonatal=bon évolution</td>
</tr>
<tr>
<td>27</td>
<td>2009</td>
<td>2 ans</td>
<td>1 an</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>cyanose</td>
<td>2ème degré</td>
<td>7</td>
<td>39</td>
<td>CIV sœur ainée</td>
<td>non</td>
</tr>
<tr>
<td>Cas</td>
<td>Année</td>
<td>Age actuel</td>
<td>Age du Dc</td>
<td>sexe</td>
<td>Origine</td>
<td>mutualiste</td>
<td>CDD</td>
<td>consanguinité</td>
<td>fratrie</td>
<td>âge mère (ans)</td>
<td>ATCD familiaux</td>
<td>ATCD personnels</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>------------</td>
<td>-----</td>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>28</td>
<td>2010</td>
<td>5 ans</td>
<td>4 ans</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>cyanose</td>
<td>1er degré</td>
<td>4</td>
<td>24</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>29</td>
<td>2011</td>
<td>13 ans</td>
<td>7 mois</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>dyspnée+fatigue</td>
<td>non</td>
<td>2</td>
<td>40</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>30</td>
<td>2010</td>
<td>2 ans</td>
<td>1 an</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>4</td>
<td>39</td>
<td>HTA maman</td>
<td>non</td>
</tr>
<tr>
<td>31</td>
<td>2010</td>
<td>5 ans</td>
<td>1 an</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>2</td>
<td>30</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>32</td>
<td>2009</td>
<td>4 ans</td>
<td>2 ans</td>
<td>F</td>
<td>Fès</td>
<td>oui</td>
<td>malaise anoxique</td>
<td>non</td>
<td>0</td>
<td>33</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>33</td>
<td>2010</td>
<td>2 ans</td>
<td>2 mois</td>
<td>M</td>
<td>Nador</td>
<td>non</td>
<td>cyanose</td>
<td>3ème degré</td>
<td>0</td>
<td>23</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>34</td>
<td>2010</td>
<td>6 ans</td>
<td>5 ans</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>dyspnée+fatigue</td>
<td>non</td>
<td>5</td>
<td>24</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>35</td>
<td>2011</td>
<td>3 ans</td>
<td>2 ans</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>29</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>36</td>
<td>2010</td>
<td>1 an</td>
<td>15 jours</td>
<td>M</td>
<td>Meknès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>0</td>
<td>19</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>37</td>
<td>2010</td>
<td>12 ans</td>
<td>6 mois</td>
<td>M</td>
<td>Fès</td>
<td>oui</td>
<td>cyanose</td>
<td>1er degré</td>
<td>3</td>
<td>35</td>
<td>HTA maman</td>
<td>non</td>
</tr>
<tr>
<td>38</td>
<td>2010</td>
<td>2 ans</td>
<td>1 an</td>
<td>M</td>
<td>Khnifra</td>
<td>non</td>
<td>cyanose</td>
<td>2ème degré</td>
<td>0</td>
<td>29</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>39</td>
<td>2010</td>
<td>4 ans</td>
<td>3 ans</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>dyspnée+fatigue</td>
<td>non</td>
<td>3ème degré</td>
<td>0</td>
<td>35</td>
<td>non</td>
</tr>
<tr>
<td>40</td>
<td>2010</td>
<td>14 ans</td>
<td>11 ans</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>9</td>
<td>42</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>41</td>
<td>2010</td>
<td>8 ans</td>
<td>4 ans</td>
<td>F</td>
<td>Taounate</td>
<td>non</td>
<td>cyanose</td>
<td>1er degré</td>
<td>2</td>
<td>39</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>42</td>
<td>2010</td>
<td>15 ans</td>
<td>10 ans</td>
<td>F</td>
<td>Al-Hoceima</td>
<td>non</td>
<td>cyanose</td>
<td>2ème degré</td>
<td>3</td>
<td>37</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>43</td>
<td>2010</td>
<td>2 ans</td>
<td>6 mois</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>malaise anoxique</td>
<td>non</td>
<td>2</td>
<td>24</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>44</td>
<td>2009</td>
<td>12 ans</td>
<td>9 ans</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>cyanose</td>
<td>1er degré</td>
<td>5</td>
<td>29</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>45</td>
<td>2010</td>
<td>6 ans</td>
<td>1 an</td>
<td>M</td>
<td>Meknès</td>
<td>oui</td>
<td>cyanose</td>
<td>non</td>
<td>7</td>
<td>35</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>46</td>
<td>2010</td>
<td>4 ans</td>
<td>1 an</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>malaise anoxique</td>
<td>2ème degré</td>
<td>3</td>
<td>42</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>47</td>
<td>2008</td>
<td>10 ans</td>
<td>7 ans</td>
<td>M</td>
<td>Taounate</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>4</td>
<td>39</td>
<td>non</td>
<td>retard psychomoteur</td>
</tr>
<tr>
<td>48</td>
<td>2009</td>
<td>4 ans</td>
<td>1 an</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>2ème degré</td>
<td>0</td>
<td>27</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>49</td>
<td>2009</td>
<td>2 ans</td>
<td>1 an</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>malaise anoxique</td>
<td>non</td>
<td>1</td>
<td>29</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>50</td>
<td>2009</td>
<td>13 ans</td>
<td>7 ans</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>3</td>
<td>32</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>51</td>
<td>2010</td>
<td>4 ans</td>
<td>2 ans</td>
<td>M</td>
<td>Fès</td>
<td>oui</td>
<td>cyanose</td>
<td>non</td>
<td>3</td>
<td>29</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>52</td>
<td>2010</td>
<td>1 an</td>
<td>4 mois</td>
<td>M</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>2</td>
<td>29</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>53</td>
<td>2009</td>
<td>3 ans</td>
<td>1 an</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>1er degré</td>
<td>1</td>
<td>30</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>54</td>
<td>2009</td>
<td>6 ans</td>
<td>3 ans</td>
<td>F</td>
<td>Fès</td>
<td>non</td>
<td>cyanose</td>
<td>non</td>
<td>3</td>
<td>30</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>55</td>
<td>2011</td>
<td>13 ans</td>
<td>12 ans</td>
<td>F</td>
<td>Taounate</td>
<td>non</td>
<td>dyspnée+fatigue</td>
<td>non</td>
<td>2</td>
<td>40</td>
<td>CC sœur non précisé</td>
<td>non</td>
</tr>
<tr>
<td>cas</td>
<td>cy néo</td>
<td>DN (Kg)</td>
<td>PN (Kg)</td>
<td>PA</td>
<td>Age DDS</td>
<td>dif alim</td>
<td>cyanose</td>
<td>Dys+ fatig</td>
<td>malaise</td>
<td>Nbre malaise</td>
<td>RSP</td>
<td>Inf. à Rep</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>oui</td>
<td>3,1</td>
<td>6,2</td>
<td></td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>3</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>2</td>
<td>non</td>
<td>2,1</td>
<td>46</td>
<td>3 mois</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>0</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>3</td>
<td>non</td>
<td>3</td>
<td>8,5</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>1</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>4</td>
<td>non</td>
<td>3</td>
<td>18</td>
<td>3 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>4</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>5</td>
<td>oui</td>
<td>3,1</td>
<td>5</td>
<td>naissance</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>6</td>
<td>non</td>
<td>2,8</td>
<td>10</td>
<td>6 mois</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>7</td>
<td>non</td>
<td>_</td>
<td>14</td>
<td>2 ans</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>8</td>
<td>non</td>
<td>3</td>
<td>15</td>
<td>1 mois</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>oui</td>
</tr>
<tr>
<td>9</td>
<td>oui</td>
<td>1,9</td>
<td>2,5</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>3</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>10</td>
<td>non</td>
<td>_</td>
<td>33</td>
<td>3 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>11</td>
<td>non</td>
<td>_</td>
<td>11</td>
<td>naissance</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>oui</td>
</tr>
<tr>
<td>12</td>
<td>non</td>
<td>_</td>
<td>16</td>
<td>1 an</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>2</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
</tr>
<tr>
<td>13</td>
<td>oui</td>
<td>2,2</td>
<td>4</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>1</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>14</td>
<td>non</td>
<td>3,3</td>
<td>6,5</td>
<td>6 mois</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>2</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>15</td>
<td>oui</td>
<td>2,7</td>
<td>2,6</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>2</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>16</td>
<td>non</td>
<td>3</td>
<td>6</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>1</td>
<td>non</td>
<td>oui</td>
<td>non</td>
</tr>
<tr>
<td>17</td>
<td>non</td>
<td>3</td>
<td>25</td>
<td>2 ans</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>18</td>
<td>non</td>
<td>3</td>
<td>13</td>
<td>1 an</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>136</td>
</tr>
<tr>
<td>19</td>
<td>non</td>
<td>3</td>
<td>12</td>
<td>1,5 an</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>113</td>
</tr>
<tr>
<td>20</td>
<td>non</td>
<td>3</td>
<td>15</td>
<td>6 mois</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>1</td>
<td>non</td>
<td>non</td>
<td>122</td>
</tr>
<tr>
<td>21</td>
<td>oui</td>
<td>3</td>
<td>9,7</td>
<td>naissance</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>2</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>22</td>
<td>oui</td>
<td>3</td>
<td>20</td>
<td>1,5 an</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>125</td>
</tr>
<tr>
<td>23</td>
<td>non</td>
<td>3,2</td>
<td>11</td>
<td>8 mois</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>3</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>150</td>
</tr>
<tr>
<td>24</td>
<td>oui</td>
<td>2,7</td>
<td>4</td>
<td>3 mois</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>25</td>
<td>oui</td>
<td>3,7</td>
<td>6,1</td>
<td>naissance</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>2</td>
<td>non</td>
<td>oui</td>
<td>non</td>
</tr>
<tr>
<td>26</td>
<td>oui</td>
<td>3,2</td>
<td>2,7</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>3</td>
<td>oui</td>
<td>non</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>oui</td>
<td>4,0</td>
<td>6,3</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>4</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
</tr>
<tr>
<td>cas</td>
<td>cy néo</td>
<td>DN</td>
<td>PN (Kg)</td>
<td>PA (Kg)</td>
<td>Age DDS</td>
<td>dif alim</td>
<td>cyanose</td>
<td>Dys+ fatig</td>
<td>malaise</td>
<td>Nbre malaise</td>
<td>RSP</td>
<td>Inf. à Rep</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>----</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>28</td>
<td>non</td>
<td>non</td>
<td>3,0</td>
<td>14</td>
<td>2 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>29</td>
<td>non</td>
<td>non</td>
<td>3,0</td>
<td>38</td>
<td>3 mois</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>30</td>
<td>non</td>
<td>non</td>
<td>3,6</td>
<td>7,9</td>
<td>8 mois</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>31</td>
<td>non</td>
<td>non</td>
<td>3,2</td>
<td>15</td>
<td>1 an</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>32</td>
<td>non</td>
<td>non</td>
<td>3,1</td>
<td>12</td>
<td>3 ans</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>33</td>
<td>oui</td>
<td>non</td>
<td>3,3</td>
<td>4,7</td>
<td>naissance</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>34</td>
<td>non</td>
<td>non</td>
<td>2,9</td>
<td>30</td>
<td>2 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>35</td>
<td>non</td>
<td>non</td>
<td>2,9</td>
<td>10</td>
<td>1 mois</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>36</td>
<td>oui</td>
<td>non</td>
<td>3,3</td>
<td>3,3</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>2</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>37</td>
<td>non</td>
<td>non</td>
<td>3,2</td>
<td>5</td>
<td>5 mois</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>38</td>
<td>oui</td>
<td>oui</td>
<td>3,1</td>
<td>7</td>
<td>naïe</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>39</td>
<td>non</td>
<td>non</td>
<td>3,2</td>
<td>10</td>
<td>2 mois</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>2</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>40</td>
<td>non</td>
<td>non</td>
<td>3,3</td>
<td>31</td>
<td>2,5 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>41</td>
<td>oui</td>
<td>non</td>
<td>3,0</td>
<td>22</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>42</td>
<td>non</td>
<td>non</td>
<td>2,9</td>
<td>50</td>
<td>3 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>43</td>
<td>non</td>
<td>non</td>
<td>3,1</td>
<td>4</td>
<td>2 ans</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>2</td>
<td>oui</td>
<td>non</td>
</tr>
<tr>
<td>44</td>
<td>non</td>
<td>non</td>
<td>3,2</td>
<td>28</td>
<td>3 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>45</td>
<td>non</td>
<td>non</td>
<td>3,3</td>
<td>25</td>
<td>8 mois</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>3</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>46</td>
<td>oui</td>
<td>non</td>
<td>2,8</td>
<td>10</td>
<td>naissance</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>3</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>47</td>
<td>oui</td>
<td>non</td>
<td>3,1</td>
<td>19</td>
<td>naissance</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>3</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>48</td>
<td>oui</td>
<td>non</td>
<td>3,3</td>
<td>8,8</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>3</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>49</td>
<td>oui</td>
<td>non</td>
<td>2,9</td>
<td>6,5</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>4</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>50</td>
<td>non</td>
<td>non</td>
<td>3,0</td>
<td>30</td>
<td>7 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>51</td>
<td>oui</td>
<td>non</td>
<td>3,6</td>
<td>25</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>52</td>
<td>oui</td>
<td>non</td>
<td>2,9</td>
<td>5</td>
<td>naissance</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>53</td>
<td>non</td>
<td>non</td>
<td>4,0</td>
<td>6,4</td>
<td>6 mois</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>54</td>
<td>non</td>
<td>non</td>
<td>2,9</td>
<td>10</td>
<td>1 an</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>_</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>55</td>
<td>non</td>
<td>non</td>
<td>3,0</td>
<td>10</td>
<td>2 ans</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>4</td>
<td>non</td>
<td>non</td>
</tr>
<tr>
<td>CAS</td>
<td>MA</td>
<td>degré MA</td>
<td>siège CIV</td>
<td>taille CIV(mm)</td>
<td>civ multiple</td>
<td>sténose infun</td>
<td>sténose valv</td>
<td>sténose supravalv</td>
<td>degré de sténose TAP (mm)</td>
<td>APD (mm)</td>
<td>APG (mm)</td>
<td>Ann pulm</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>oui</td>
<td>50%</td>
<td>PM</td>
<td>10</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>oui</td>
<td>50%</td>
<td>PM</td>
<td>20</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>modérée</td>
<td>20</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>oui</td>
<td>25%</td>
<td>PM</td>
<td>10</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>oui</td>
<td>35%</td>
<td>PM</td>
<td>12</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>oui</td>
<td>40%</td>
<td>PM</td>
<td>9</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>oui</td>
<td>50%</td>
<td>PM</td>
<td>12</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>oui</td>
<td>35%</td>
<td>PM</td>
<td>10</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>oui</td>
<td>25%</td>
<td>PM</td>
<td>15</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>modérée</td>
<td>10</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>oui</td>
<td>50%</td>
<td>PM</td>
<td>8</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>oui</td>
<td>45%</td>
<td>PM</td>
<td>8</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>13</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>oui</td>
<td>25%</td>
<td>PM</td>
<td>12</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>12</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>oui</td>
<td>45%</td>
<td>PM</td>
<td>10</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>oui</td>
<td>50%</td>
<td>PM</td>
<td>12</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>oui</td>
<td>50%</td>
<td>PM</td>
<td>8</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>oui</td>
<td>45%</td>
<td>PM</td>
<td>6</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>oui</td>
<td>50%</td>
<td>PM</td>
<td>13</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>oui</td>
<td>45%</td>
<td>PM</td>
<td>16</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>modéré</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>oui</td>
<td>25%</td>
<td>PM</td>
<td>13</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>modéré</td>
<td>13</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>oui</td>
<td>35%</td>
<td>PM</td>
<td>14</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>oui</td>
<td>30%</td>
<td>PM</td>
<td>13</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>8</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>oui</td>
<td>30%</td>
<td>PM</td>
<td>11</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>serré</td>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>oui</td>
<td>20%</td>
<td>PM</td>
<td>10</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>oui</td>
<td>40%</td>
<td>PM</td>
<td>11</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>oui</td>
<td>30%</td>
<td>PM</td>
<td>7</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>modéré</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>oui</td>
<td>35%</td>
<td>PM</td>
<td>10</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>serré</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>oui</td>
<td>35%</td>
<td>PM</td>
<td>8</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>modéré</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>27</td>
<td>oui</td>
<td>45%</td>
<td>PM</td>
<td>15</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>cas</td>
<td>MA</td>
<td>degré MA</td>
<td>siege CIV</td>
<td>taille CIV(mm)</td>
<td>CIV multiple</td>
<td>sténose infave</td>
<td>Sten supravalv</td>
<td>dégré de sténose</td>
<td>TAP (mm)</td>
<td>APD (mm)</td>
<td>APG (mm)</td>
<td>Ann pulm</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>28</td>
<td>oui</td>
<td>50%</td>
<td>PM 10</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>modéré</td>
<td>13</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>oui</td>
<td>50%</td>
<td>PM 26</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>serré</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>oui</td>
<td>35%</td>
<td>PM 15</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>oui</td>
<td>50%</td>
<td>PM 10</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>serré</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>32</td>
<td>oui</td>
<td>45%</td>
<td>PM 12</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>33</td>
<td>oui</td>
<td>50%</td>
<td>PM 9</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>serré</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>34</td>
<td>oui</td>
<td>30%</td>
<td>PM 18</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>serré</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>35</td>
<td>oui</td>
<td>50%</td>
<td>PM 12</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>36</td>
<td>oui</td>
<td>50%</td>
<td>PM 8</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>37</td>
<td>oui</td>
<td>50%</td>
<td>PM 8</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>modéré</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>38</td>
<td>oui</td>
<td>40%</td>
<td>PM 10</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>modéré</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>39</td>
<td>oui</td>
<td>50%</td>
<td>PM 10</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>modéré</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>oui</td>
<td>45%</td>
<td>PM 15</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>modéré</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>41</td>
<td>oui</td>
<td>30%</td>
<td>PM 12</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>modéré</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>42</td>
<td>oui</td>
<td>50%</td>
<td>PM 16</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>43</td>
<td>oui</td>
<td>25%</td>
<td>PM 5</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>modéré</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>44</td>
<td>oui</td>
<td>40%</td>
<td>PM 15</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>modéré</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>45</td>
<td>oui</td>
<td>35%</td>
<td>PM 10</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>modéré</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>46</td>
<td>oui</td>
<td>40%</td>
<td>PM 12</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>47</td>
<td>oui</td>
<td>45%</td>
<td>PM 15</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>48</td>
<td>oui</td>
<td>45%</td>
<td>PM 12</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>modéré</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>49</td>
<td>oui</td>
<td>40%</td>
<td>PM 10</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>modéré</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>oui</td>
<td>50%</td>
<td>PM 25</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>modéré</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>51</td>
<td>oui</td>
<td>45%</td>
<td>PM 15</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>modéré</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>52</td>
<td>oui</td>
<td>25%</td>
<td>PM 7</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>serré</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>53</td>
<td>oui</td>
<td>45%</td>
<td>PM 10</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>serré</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>54</td>
<td>oui</td>
<td>45%</td>
<td>PM 15</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>serré</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>55</td>
<td>oui</td>
<td>50%</td>
<td>PM 15</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>serré</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>CAS</td>
<td>RADIOGRAPHIE PULMONAIRE</td>
<td>ELECTROCARDIOGRAMME</td>
<td>BILAN BIOLOGIQUE</td>
<td>AUTRES EXPLORATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cœur sabot</td>
<td>CMG</td>
<td>vascularisation pulmonaire</td>
<td>ECG faite</td>
<td>Rythme Sinusal</td>
<td>Axe</td>
<td>HVD</td>
<td>HAD</td>
<td>trouble de conduction</td>
<td>GR (million/ml)</td>
<td>HG g/dl</td>
<td>Ht</td>
</tr>
<tr>
<td>1</td>
<td>oui</td>
<td>oui</td>
<td>diminuée</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,64</td>
<td>16,6</td>
<td>51%</td>
<td>73,2</td>
<td>23,9</td>
<td>normal</td>
</tr>
<tr>
<td>2</td>
<td>oui</td>
<td>oui</td>
<td>diminuée</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>5,68</td>
<td>14,2</td>
<td>44%</td>
<td>72,1</td>
<td>24</td>
<td>normal</td>
</tr>
<tr>
<td>3</td>
<td>oui</td>
<td>oui</td>
<td>diminuée</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>4</td>
<td>10,6</td>
<td>33%</td>
<td>76,8</td>
<td>24,1</td>
<td>normal</td>
</tr>
<tr>
<td>4</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>5</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>7,76</td>
<td>19,4</td>
<td>54%</td>
<td>81</td>
<td>35</td>
<td>normal</td>
</tr>
<tr>
<td>6</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>5,1</td>
<td>12,3</td>
<td>34%</td>
<td>68,9</td>
<td>24,7</td>
<td>_</td>
</tr>
<tr>
<td>7</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>4,9</td>
<td>12</td>
<td>33%</td>
<td>74,3</td>
<td>26,8</td>
<td>normal</td>
</tr>
<tr>
<td>8</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>9</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>7,76</td>
<td>19,4</td>
<td>54%</td>
<td>81</td>
<td>35</td>
<td>normal</td>
</tr>
<tr>
<td>10</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>5,1</td>
<td>12,3</td>
<td>34%</td>
<td>68,9</td>
<td>24,7</td>
<td>_</td>
</tr>
<tr>
<td>11</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>4,9</td>
<td>12</td>
<td>33%</td>
<td>74,3</td>
<td>26,8</td>
<td>normal</td>
</tr>
<tr>
<td>12</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>13</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>14</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>15</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>16</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>17</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>18</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>19</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>20</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>21</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>22</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>23</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>24</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>25</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>26</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>27</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,84</td>
<td>19,2</td>
<td>55%</td>
<td>83,9</td>
<td>29,4</td>
<td>_</td>
</tr>
<tr>
<td>CAS</td>
<td>Coeur</td>
<td>CMG</td>
<td>vasculisation pulmonaire</td>
<td>ECG fait</td>
<td>Rythme Sinusal</td>
<td>Axe</td>
<td>HVD</td>
<td>HAD</td>
<td>trouble de conduction</td>
<td>GR (million/mL)</td>
<td>HG (g/dl)</td>
<td>HT</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>--------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>----</td>
</tr>
<tr>
<td>28</td>
<td>oui</td>
<td>oui</td>
<td>Diminuée</td>
<td>oui</td>
<td>oui</td>
<td>droit</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>3,3</td>
<td>9,8</td>
<td>30%</td>
</tr>
<tr>
<td>29</td>
<td>non</td>
<td>non</td>
<td>diminuée</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>30</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>oui</td>
<td>normal</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>7,8</td>
<td>19,5</td>
<td>55%</td>
</tr>
<tr>
<td>31</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>oui</td>
<td>droit</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>4,43</td>
<td>10,9</td>
<td>33%</td>
</tr>
<tr>
<td>32</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>33</td>
<td>non</td>
<td>non</td>
<td>diminuée</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>34</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>oui</td>
<td>droit</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>4,7</td>
<td>11,3</td>
<td>34%</td>
</tr>
<tr>
<td>35</td>
<td>oui</td>
<td>oui</td>
<td>diminuée</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>36</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>37</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>38</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>39</td>
<td>oui</td>
<td>oui</td>
<td>diminuée</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>40</td>
<td>non</td>
<td>non</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>41</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>42</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>43</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>oui</td>
<td>droit</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>2,9</td>
<td>8,6</td>
<td>28%</td>
</tr>
<tr>
<td>44</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>45</td>
<td>oui</td>
<td>oui</td>
<td>diminuée</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>46</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>oui</td>
<td>droit</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>47</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>48</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>49</td>
<td>non</td>
<td>non</td>
<td>Normale</td>
<td>oui</td>
<td>oui</td>
<td>droit</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>6,89</td>
<td>14,4</td>
<td>44%</td>
</tr>
<tr>
<td>50</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>51</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>oui</td>
<td>oui</td>
<td>droit</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>4,43</td>
<td>10,9</td>
<td>33%</td>
</tr>
<tr>
<td>52</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>53</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>54</td>
<td>oui</td>
<td>oui</td>
<td>Normale</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>55</td>
<td>oui</td>
<td>oui</td>
<td>diminuée</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>CAS</td>
<td>TRAITEMENT MEDICAL</td>
<td>TRAITEMENT CHIRURGICAL</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>Aspirine</td>
<td>TTT martial</td>
<td>opéré</td>
<td>Blalock</td>
<td>Cc d’emblé</td>
<td>Cc après Blalock</td>
<td>Lieu de réalisation</td>
<td>Age de réalisation</td>
<td>Poids (Kg)</td>
<td>autre geste associé à la cure</td>
<td>suites opératoires</td>
</tr>
<tr>
<td>1</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>8 mois</td>
<td>8</td>
<td>non</td>
<td>simple</td>
</tr>
<tr>
<td>2</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>CHU Fès</td>
<td>16 ans</td>
<td>47</td>
<td>non</td>
<td>simple</td>
</tr>
<tr>
<td>3</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>2 ans</td>
<td>10</td>
<td>non</td>
<td>simple</td>
</tr>
<tr>
<td>4</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>CHU Fès</td>
<td>3 ans et demi</td>
<td>20</td>
<td>non</td>
<td>simple</td>
</tr>
<tr>
<td>7</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>CHU Fès</td>
<td>3 ans et demi</td>
<td>13</td>
<td>fermeture de la CIA</td>
<td>simple</td>
</tr>
<tr>
<td>8</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>Suisse</td>
<td>47</td>
<td>oui</td>
<td>non</td>
<td>simple</td>
</tr>
<tr>
<td>11</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>CHU Fès</td>
<td>3 ans</td>
<td>11</td>
<td>non</td>
<td>décès</td>
</tr>
<tr>
<td>12</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>2 ans après Blalock</td>
<td>Marseille</td>
<td>Blk=2ans; Cc=4 ans</td>
<td></td>
<td>Cure de la coarct de l’Ao</td>
</tr>
<tr>
<td></td>
<td>(Resection anastomose termino-terminale)</td>
<td>Thrombose de l’art fémorale</td>
</tr>
<tr>
<td>13</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td>simple</td>
</tr>
<tr>
<td>14</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>CHU Fès</td>
<td>10 mois</td>
<td>8</td>
<td>non</td>
<td>décès</td>
</tr>
<tr>
<td>17</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>3 ans et demi</td>
<td>13</td>
<td>non</td>
<td>simple</td>
</tr>
<tr>
<td>20</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>H. Ibn SINA</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td>simple</td>
</tr>
<tr>
<td>21</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>Espagne</td>
<td>2 ans</td>
<td>10</td>
<td>non</td>
<td>Insuf cardiaque globale</td>
</tr>
<tr>
<td>22</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>2 ans après Blalock</td>
<td>H.Ibn SINA</td>
<td>8 mois- 3 ans</td>
<td>Blk= 6, Cc=12</td>
<td>non</td>
</tr>
<tr>
<td>26</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>TRAITEMENT MEDICAL</td>
<td>TRAITEMENT CHIRURGICAL</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>Aspirine</td>
<td>TTT</td>
<td>TTT</td>
<td>opéré</td>
<td>Blalock</td>
<td>Cc</td>
<td>Cc d'emblé</td>
<td>Cc après Blalock</td>
<td>Lieu de réalisation</td>
<td>Age de réalisation</td>
<td>Poids (Kg)</td>
</tr>
<tr>
<td>28</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>2 ans 8 mois</td>
<td>13</td>
</tr>
<tr>
<td>29</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>31</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>2 ans 8 mois</td>
<td>13</td>
</tr>
<tr>
<td>32</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>33</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>34</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>35</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>36</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>37</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>38</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>39</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>1 an</td>
<td>12</td>
</tr>
<tr>
<td>41</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>5 mois - 6 ans</td>
<td>8</td>
</tr>
<tr>
<td>42</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>5 mois - 6 ans</td>
<td>8</td>
</tr>
<tr>
<td>43</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>12 ans</td>
<td>13</td>
</tr>
<tr>
<td>44</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>12 ans</td>
<td>13</td>
</tr>
<tr>
<td>45</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. Cheikh Zaid</td>
<td>2 ans 3 mois</td>
<td>13</td>
</tr>
<tr>
<td>46</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>47</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>48</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>49</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>50</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>51</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>52</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>53</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>54</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>55</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>H. ibn SINA</td>
<td>3 ans et demi</td>
<td>8</td>
</tr>
<tr>
<td>CAS</td>
<td>complication</td>
<td>date du dernier control</td>
<td>Persistance des Signes cliniques</td>
<td>SaO2</td>
<td>Echographie postopératoire</td>
<td>Atteinte d'intervention</td>
<td>Décès</td>
<td>perdu de vue</td>
<td>Recul des malades opérés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>------------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>non</td>
<td>24/03/2011</td>
<td>non</td>
<td>98%</td>
<td>CIV résiduelle minime</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>2 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>non</td>
<td>26/02/2012</td>
<td>non</td>
<td>97%</td>
<td>CIV résiduelle + Gmax=50 mmhg</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>1 mois</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>malaise grave ; hospitalisation en réanimation</td>
<td>22/09/2011</td>
<td>non</td>
<td>96%</td>
<td>CIV résiduelle + Gmax=30 mmhg</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>1 an</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>non</td>
<td>03/02/2012</td>
<td>oui</td>
<td>_</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>non</td>
<td>26/01/2012</td>
<td>oui</td>
<td>65%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>non</td>
<td>25/01/2012</td>
<td>oui</td>
<td>75%</td>
<td>Blalock en cours de fermeture</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>3 mois</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>non</td>
<td>15/11/2011</td>
<td>non</td>
<td>98%</td>
<td>bonne résultats</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>non</td>
<td>09/05/2011</td>
<td>oui</td>
<td>95%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>non</td>
<td>21/12/2011</td>
<td>oui</td>
<td>85%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>non</td>
<td>17/10/2011</td>
<td>non</td>
<td>80%</td>
<td>petit CIV résiduelle</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>non</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>oui</td>
<td>(au cours de l'acte)</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>non</td>
<td>08/07/2011</td>
<td>non</td>
<td>85%</td>
<td>sténose infun serré+ Insuf AO+FOP</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>4 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>malaise grave, décès à domicile</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>non</td>
<td>oui à domicile</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>malaise anoxique jugulé aux urgences pédiatriques</td>
<td>16/08/2010</td>
<td>oui</td>
<td>76%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>malaise grave, décédé à la maison</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>non</td>
<td>oui à domicile à j 45</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>malaise anoxique jugulé aux urgences pédiatriques</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>oui (au cours de l'acte)</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>non</td>
<td>19/03/2010</td>
<td>_</td>
<td>69%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>non</td>
<td>18/04/2011</td>
<td>oui</td>
<td>78%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>non</td>
<td>19/10/2009</td>
<td>non</td>
<td>93%</td>
<td>bonne résultats</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>3 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>malaise anoxique jugulé aux urgences pédiatriques</td>
<td>15/10/2010</td>
<td>non</td>
<td>95%</td>
<td>sténose pulmonaire modéré</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>2 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>non</td>
<td>25/09/2009</td>
<td>oui</td>
<td>85%</td>
<td>CIV résiduelle + hypocontarctilitée VG+ dilatation VD et VG</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>2 ans et demi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>non</td>
<td>02/01/2012</td>
<td>oui</td>
<td>85%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>malaise anoxique jugulé aux urgences pédiatriques</td>
<td>15/04/2011</td>
<td>oui</td>
<td>95%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>non</td>
<td>21/03/2011</td>
<td>oui</td>
<td>85%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>non</td>
<td>18/08/2011</td>
<td>non</td>
<td>96%</td>
<td>sténose résiduelle modéré+CIV résiduelle</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>3 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>malaise anoxique jugulé aux urgences pédiatriques</td>
<td>03/06/2011</td>
<td>oui</td>
<td>75%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>non</td>
<td>23/04/2009</td>
<td>oui</td>
<td>85%</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>complication</td>
<td>date du dernier control</td>
<td>Persistance des Signes cliniques</td>
<td>SaO2</td>
<td>Echographie postopératoire</td>
<td>Attente d'intervention</td>
<td>Décès</td>
<td>perdu de vue</td>
<td>Recul des malades opérés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>---</td>
<td>------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>non</td>
<td>03/06/2010</td>
<td>oui</td>
<td>70%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>non</td>
<td>21/06/2011</td>
<td>non</td>
<td>98%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>non</td>
<td>29/09/2011</td>
<td>oui</td>
<td>95%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>non</td>
<td>22/09/2011</td>
<td>non</td>
<td>98%</td>
<td>épanchemement péricardique minime + 2CIV résiduelle</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>1 an et demi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>malaise anoxique jugulé aux urgences pédiatriques</td>
<td>22/03/2010</td>
<td>non</td>
<td>99%</td>
<td>Insuffisance aortique minime</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>4 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>non</td>
<td>10/06/2010</td>
<td>oui</td>
<td>85%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td>non</td>
<td>oui</td>
<td>_</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>oui</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>non</td>
<td>25/10/2010</td>
<td>oui</td>
<td>83%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>non</td>
<td>04/07/2011</td>
<td>oui</td>
<td>92%</td>
<td>fuite tricuspid+CIV résid+ OD dilaté</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>12 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>non</td>
<td>04/11/2011</td>
<td>oui</td>
<td>80%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td>non</td>
<td>oui</td>
<td>_</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>non</td>
<td>17/04/2011</td>
<td>oui (souffle)</td>
<td>95%</td>
<td>Dilatation OD+ SP modéré+ fuite pulm</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>3 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>non</td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td>non</td>
<td>oui</td>
<td>_</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>malaise anoxique jugulé aux urgences pédiatriques</td>
<td>22/02/2011</td>
<td>oui</td>
<td>86%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>non</td>
<td>02/03/2011</td>
<td>non</td>
<td>98%</td>
<td>bonne résultats</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>2 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>non</td>
<td>12/09/2011</td>
<td>non</td>
<td>97%</td>
<td>bonne résultats+ CIA minime resid shuntant Gche-Dt</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>4 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>non</td>
<td>08/07/2011</td>
<td>non</td>
<td>96%</td>
<td>bonne résultats</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>2 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>non</td>
<td>02/05/2011</td>
<td>oui</td>
<td>47%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>non</td>
<td>04/03/2011</td>
<td>oui</td>
<td>69%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>malaise anoxique jugulé aux urgences pédiatriques</td>
<td>31/11/2009</td>
<td>oui</td>
<td>88%</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>non</td>
<td>24/05/2011</td>
<td>non</td>
<td>99%</td>
<td>bonne résultats</td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>3 ans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>non</td>
<td>15/01/2010</td>
<td>oui</td>
<td>88%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>non</td>
<td>10/01/2001</td>
<td>oui</td>
<td>93%</td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>non</td>
<td></td>
<td>Jamais</td>
<td></td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>non</td>
<td></td>
<td>Jamais</td>
<td></td>
<td>_</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>non</td>
<td></td>
<td>Jamais</td>
<td></td>
<td>_</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESULTATS
I- Difficultés et limites de l’étude :

Comme toute étude rétrospective, les difficultés majeures que nous avons rencontrées étaient liées à l’exploration des dossiers ; En plus du fait que dans certains dossiers nous avons observé certaines données manquantes, notamment le recul et le suivi des malades en consultation.

II- Etude épidémiologique :

A- Répartition géographique :

La plus part des patients sont originaires des environs de Fès et Meknès, et des régions du Nord.

Figure N°7 : Répartition géographique des patients
B- Age :

L’âge de nos patients au moment du diagnostic varie de la naissance à 12 ans avec une moyenne de 2 ans et 7 mois.

Nous remarquons que dans la moitié des cas le diagnostic se fait avant l’âge de 1 an.

Tableau N°1 : Répartition des malades selon les tranches d’âges

<table>
<thead>
<tr>
<th>Tranches d’âges</th>
<th>Nombre de cas</th>
<th>pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>moins de 1 an</td>
<td>29</td>
<td>52%</td>
</tr>
<tr>
<td>1 an à 5 ans</td>
<td>15</td>
<td>27%</td>
</tr>
<tr>
<td>5 ans à 10 ans</td>
<td>7</td>
<td>13%</td>
</tr>
<tr>
<td>plus de 10 ans</td>
<td>4</td>
<td>7%</td>
</tr>
</tbody>
</table>

Figure N°8 : Répartition selon l’âge de découverte
C- Sexe :

La répartition de nos malades selon le sexe montre une prédominance masculine avec un sexe ratio de 1,61. En effet parmi les 55 patients atteints de tétralgie de Fallot :

- 34 patients sont de sexe masculin, soit 62% des cas,
- 21 patients sont de sexe féminin, soit 38% des cas.

Figure N°9 : Répartition des malades selon le sexe
D- niveau socio-économique :

La quasi-totalité des patients ont un niveau socio-économique très modeste, seuls 11% d'entre eux bénéficient d'une couverture sociale.

Figure N°10: Répartition des malades selon la couverture sociale
E- Répartition des cas selon les années

On remarque que la plupart de nos malades sont recrutés en 2010.

Tableau N°2 : Répartition des malades selon les années de recrutement

<table>
<thead>
<tr>
<th>Années</th>
<th>Nombre de cas</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2</td>
<td>4%</td>
</tr>
<tr>
<td>2009</td>
<td>14</td>
<td>25%</td>
</tr>
<tr>
<td>2010</td>
<td>28</td>
<td>51%</td>
</tr>
<tr>
<td>2011</td>
<td>11</td>
<td>20%</td>
</tr>
</tbody>
</table>

Figure N°11:Répartition des malades en fonction de l'année de recrutement
III- Facteurs Etiologiques :

A- La consanguinité :

La notion de consanguinité parentale est notée chez 17 malades soit 31% des cas dont la plupart de premier degré.

Parmi ces cas ; 12% des cas ont une consanguinité de 1ère degré et 11% des cas ont une consanguinité de 2ème degré et 7% des cas ont une consanguinité de 3ème degré.

Figure N°12 : Répartition des malades selon le degré de consanguinité
B- Antécédents :

F - Antécédents familiaux :

Nous avons relevé :

- Trois cas de cardiopathie congénitale dans la famille :
 - Une sœur de 16 ans ayant une CIV ;
 - Un cousin germain présentant une cardiopathie cyanogène non documentée.
 - Une sœur décédée qui avait une CC non précisée

- Deux cas d’HTA maternelle
- Deux cas de diabète maternel
- Un cas d’une fièvre au cours de la grossesse dont l’origine n’a pas été précisée.

F L’âge de la maman :

Dans notre série l’âge maternel moyen est de 31 ans, les extrêmes sont 18 ans et 42 ans, 18 mères ont un âge supérieur à 35 ans.

F L’âge du père :

L’âge moyen du père est de 38 ans avec 24 ans de minima et 75 ans de maxima.

F Antécédents personnels :

- La grossesse a été suivie dans 57% des cas ; l’échographie morphologique fœtale n’a été réalisée dans aucun cas.
- La période néonatale a été marquée par une cyanose dans 38 % des cas ;
- Un cas d’infection néonatale dont l’état a nécessité une hospitalisation au service de néonatologie pendant une semaine, l’évolution était bonne ;
IV- Etude clinique:

A- **Age de début des symptômes :**

Dans notre série l’âge de début des symptômes de la maladie s’étalent de la naissance à l’âge de 7 ans et demi ; avec un âge moyen qui s’élève à **8 mois**.

En analysant sa répartition en fonction des tranches d’âge nous remarquons que plus de 70% des cas ont moins de 1 an.

![Figure N°13 : Répartition en fonction de l’âge de découverte](image)
B- **Circonstance de découverte**

Le motif de consultation en cas de TF est variable ; dans notre série, le motif de consultation était soit une cyanose soit un malaise anoxique soit une dyspnée et fatigabilité.

Tableau N°3 : Pourcentage des différents motifs de consultation

<table>
<thead>
<tr>
<th>Mode de découverte</th>
<th>Nombre de cas</th>
<th>pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanose</td>
<td>38</td>
<td>69%</td>
</tr>
<tr>
<td>Malaise anoxique</td>
<td>11</td>
<td>20%</td>
</tr>
<tr>
<td>Dyspnée+fatigabilité</td>
<td>06</td>
<td>11%</td>
</tr>
</tbody>
</table>

Figure N°14 : Répartition des malades en fonction du motif de consultation
C- Signes cliniques :

- La cyanose a été notée chez 52 patients soit 95% des cas ; l’installation de la cyanose s’est faite à la naissance chez 21 malades soit 38% des cas ;
- La dyspnée ou la fatigabilité à l’effort a été signalée chez 47 malades soit 85% des cas ;
- Malaises anoxiques ont émaillé l’évolution de 24 malades (soit 43% des cas) avec une fréquence qui varie entre 1fois/semaine et 3 fois/jours ; la totalité de nos malades ont eux des crises hypoxiques peu sévères ; 6 cas d’état de mal anoxique ont été notés dont l’état a nécessité une hospitalisation au service de pédiatrie, l’évolution était bonne dans tous les cas.
- L’hippocratismé digital a été constaté chez 21 malades soit 38% des cas ; il atteignait dans la majorité des cas les patients dont la cardiopathie n’a été découverté qu’à un âge avancé.
- Accroupissement ou squatting est relevé chez 17 enfants soit 31% des cas.
- Les infections à répétition ont été notées chez 14 malades soit 25% des cas.
- Les difficultés alimentaires ont été rencontrées chez 22 malades soit une fréquence de 40% ces difficultés, qui surviennent surtout au moment des têtés, se manifestent souvent par des malaises hypoxiques.
Figure N°15 : Pourcentage des différents signes fonctionnels
D- Signes physiques:

La saturation sanguine en oxygène : tous nos malades ont bénéficié d’une mesure de la saturation sans et sous oxygène ;

La saturation sans oxygène varie entre 29% de minima et 97% de maxima avec une saturation moyenne de 74%.

Tableau N°4 : répartition des cas selon la saturation sanguine en oxygène à l’air ambiant

<table>
<thead>
<tr>
<th>saturation sanguine en O2 à l’air ambiant</th>
<th>Nombre de cas</th>
<th>pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>moins de 40%</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td>41%- 50%</td>
<td>5</td>
<td>9%</td>
</tr>
<tr>
<td>51%-60%</td>
<td>9</td>
<td>16%</td>
</tr>
<tr>
<td>61%-70%</td>
<td>7</td>
<td>13%</td>
</tr>
<tr>
<td>71%-80%</td>
<td>9</td>
<td>16%</td>
</tr>
<tr>
<td>81%-90%</td>
<td>18</td>
<td>32%</td>
</tr>
<tr>
<td>91%-100%</td>
<td>5</td>
<td>9%</td>
</tr>
</tbody>
</table>

La saturation sous oxygène s’est améliorée dans plus de 55% par rapport à celle à l’air ambiant.

Ainsi la saturation sous oxygène varie entre 55% et 100% avec une saturation moyenne de 84% A noter 2 cas de Sa O₂ sous O₂ à 100% (Fallot rose).
Figure N° 15 : saturation sanguine en oxygène à l’air ambiant et sous oxygénation
Le retard staturo-pondéral a été noté chez 3 malades soit 5% des cas, celui-ci touche autant le poids que la taille, il était modéré dans tous les cas.

L'examen clinique a noté un syndrome dysmorphique chez 14 malades soit 23% des cas dont :

- 8 cas de syndrome de Di-Georges
- 4 cas de trisomie 21
- 1 cas de trisomie 18
- 1 cas de Sd dysmorphique non précisé.

Par ailleurs nous avons noté des malformations extracardiaques associées à la tétralogie de Fallot chez 8 patients soit 14% des cas. La répartition de ces anomalies est la suivante :

- 3 cas de fente palatine
- 1 cas d’hernie inguino-scrotale
- 1 cas d’imperforation anale
- 1 cas de myéloméningocèle associée à une agénésie du corps calleux
- 1 cas d’agénésie du radius associée à une syndactylie
- 1 cas d’hexadactylie de la main gauche

L’examen clinique a objectivé également un cas de surdité profonde.

Examen cardio-vasculaire :

- Le souffle de sténose pulmonaire a été objectivé chez 54 malades soit 99% des cas.
- Un souffle de CIV a été noté chez 16 malades soit 29% des malades ;
V- EXAMENS PARACLINIQUES :

A- Radiographie du thorax face :

Tous nos malades ont bénéficié d’une radiographie pulmonaire dont les résultats étaient comme suit :

° La cardiomégalie a été notée chez 35 malades soit 64% des cas ; elle reste dans la majorité des cas modérée ;

° L’hyper convexité de l’arc inférieur gauche avec une pointe sus-diaphragmatique associée à une concavité de l’arc moyen gauche réalisant l’aspect classique de « cœur en sabot » est observée chez 48 malades soit 87% des cas.

Figure N°16 : Modification de la silhouette cardiaque dans la TF
L’analyse de la vascularisation pulmonaire a noté :

- Une hypo vascularisation chez 24 malades (44%);
- Une vascularisation normale chez 31 malades (56%). (Figure N°17)

![Pie chart showing vascularisation distribution](image)

Figure N°17 : Répartition des malades selon l’état de la vascularisation pulmonaire

B- L’électrocardiogramme :

Parmi les 55 cas, seuls 19 malades ont bénéficié d’un électrocardiogramme. Ceci s’explique par un problème purement technique vu qu’on ne dispose pas au sein du service des électrodes adaptées pour les nourrissons.

Les résultats sont les suivants :

- Le rythme est sinusal dans la totalité des cas.
- L’axe du cœur était à droite chez 15 malades soit 78% des cas chez qui l’ECG a été réalisé ; dans les 4 autres cas l’axe du cœur était normal
- L’hypertrophie ventriculaire droite d’adaptation a été notée chez 15 malades soit 78% des cas ;
- L’hypertrophie auriculaire droite n’a été signalée dans aucun cas.
- Un seul cas de bloc de branche droit a été noté en préopératoire.
C- L’échocardiographie et doppler :

Cet examen a été réalisé chez tous les malades, il a permis de poser le diagnostic de tétralogie de Fallot chez tous les patients et de dépister des malformations cardio-vasculaires associées chez un grand nombre d’entre eux. L’échocoeur a permis d’étudier :

✓ Les anomalies élémentaires de la tétralogie de Fallot à savoir :
 o Un Malalignement du septum interventriculaire dans 100% des cas dont le degré était variable allant de 20% de minima à 50% de maxima avec une moyenne de 41%.
 o La communication inter ventriculaire péri-membraneuse haute a été constatée chez tous les malades sans exception ; le diamètre de la CIV varie de 5 à 26 mm, avec une moyenne de 12 mm.
 o Le chevauchement de l’aorte a été mis en évidence chez tous les patients ; le degré de chevauchement est rarement précisé sur les comptes rendus d’échographie. Le diamètre de l’anneau aortique était variable allant de 6 mm de minima à 35 mm de maxima avec une moyenne de 16,27 mm.
 o L’Hypertrophie Ventriculaire Droite a été mise en évidence chez tous les malades ;
 o La sténose pulmonaire a été mise en évidence chez tous les patients ; une répartition en fonction du siège de celle-ci est résumée dans le tableau N°5.
Tableau N°5 : Répartition en fonction du siège de la sténose

<table>
<thead>
<tr>
<th>Siège de la sténose pulmonaire</th>
<th>Nombre de cas</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infundubulaire</td>
<td>20</td>
<td>36%</td>
</tr>
<tr>
<td>Infundubulaire et valvulaire</td>
<td>12</td>
<td>22%</td>
</tr>
<tr>
<td>Infundubulaire, valvulaire et sus-valvulaire</td>
<td>12</td>
<td>22%</td>
</tr>
<tr>
<td>Valvulaire isolée</td>
<td>11</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>100%</td>
</tr>
</tbody>
</table>

La sténose a été jugée :
- modérée chez 19 malades soit 35% des cas
- sévère chez 32 malades soit 58% des cas
- très sévère chez 4 malades soit 7% des cas

Figure N°18 : Répartition des malades selon le degré de la sténose pulmonaire
Ø l’écho-cœur a permis également la mesure du diamètre du Tronc, de l’anneau et des branches de l’artère pulmonaire dont les résultats sont les suivants :

Tableau N°6: Diamètre de l’artère pulmonaire et de ses branches

<table>
<thead>
<tr>
<th></th>
<th>minima (mm)</th>
<th>Maxima (mm)</th>
<th>moyenne (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tronc de l’artère pulmonaire</td>
<td>3</td>
<td>20</td>
<td>8,37</td>
</tr>
<tr>
<td>Artère pulmonaire droite</td>
<td>2</td>
<td>18</td>
<td>7,14</td>
</tr>
<tr>
<td>Artère pulmonaire gauche</td>
<td>2</td>
<td>20</td>
<td>7,16</td>
</tr>
<tr>
<td>Anneau pulmonaire</td>
<td>3</td>
<td>21</td>
<td>8,68</td>
</tr>
</tbody>
</table>

Ø L’échocardiographie permet grâce au Doppler d’estimer le gradient de pression de part et d’autre de la valve pulmonaire. Dans notre série, le gradient de pression transvalvulaire maximal (**Gmax**) variait entre 25 à 110mm de mercure (Hg), avec une moyenne de 76 mm Hg.

Notons que dans 3/4 des cas, le Gmax était supérieur à 70 mm Hg.

Figure N°19 : Répartition en fonction du Gradient transvalvulaire maximal
L’échocardiographie a permis également de faire le diagnostic des différentes malformations cardio-vasculaires associées à la tétralogie de Fallot à savoir :

- Communication interauriculaire chez 11 malades soit 20% des cas ;
- Persistance du canal artériel : 8 cas soit 14,5%
- 2 cas d’anomalie des artères coronaires soit 3,6%
- CIV multiples notées chez 2 malades soit 3,6%
- 1 cas de Coarctation de l’aorte soit 1%
- 1 cas d’arc aortique à droite soit 1%
- Foramen ovale perméable chez 4 patients soit 7,2%
- 1 cas de situs ambigu avec oreillette droite de type gauche avec absence de la veine cave inférieure avec retour azygos et absence de sinus coronaire.
- 1 cas de circulation collatérale aorto-pulmonaire

Tableau : Fréquence des différentes anomalies cardiovasculaires diagnostiquées après écho-coeur et angiocardiographie.

<table>
<thead>
<tr>
<th></th>
<th>Nombre de cas</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication interauriculaire</td>
<td>11</td>
<td>20%</td>
</tr>
<tr>
<td>Persistance du canal artériel</td>
<td>8</td>
<td>14,5%</td>
</tr>
<tr>
<td>Anomalie des artères coronaires</td>
<td>2</td>
<td>3,6%</td>
</tr>
<tr>
<td>CIV multiple</td>
<td>2</td>
<td>3,6%</td>
</tr>
<tr>
<td>Coarctation de l’aorte</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Arc aortique à droite</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Foramen ovale perméable</td>
<td>4</td>
<td>7,2%</td>
</tr>
<tr>
<td>Circulation collatérale aorto-</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>pulmonaire</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>situs ambigu</td>
<td>1</td>
<td>1%</td>
</tr>
</tbody>
</table>
Au terme de ce bilan on a conclu que 37 malades présentent une forme régulière de TF soit 67% des cas ; et 18 malades ont une forme irrégulière soit une fréquence de 33%.

Figure N° 20 : Répartition des malades selon la forme de la Tétralogie de Fallot
D- Examens biologiques:

Malheureusement seuls 22 malades, soit 40% des cas, ont bénéficié d’un bilan biologique qui est dans la plupart des cas incomplet, ainsi :

- Parmi les 22 malades, 20 cas ont bénéficié d’une NFS dont les résultats sont :

<table>
<thead>
<tr>
<th></th>
<th>minima</th>
<th>Maxima</th>
<th>moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taux d'hémoglobine (g/dl)</td>
<td>8,6</td>
<td>19,6</td>
<td>13,57</td>
</tr>
<tr>
<td>Taux d'hématocrite (%)</td>
<td>28</td>
<td>56</td>
<td>40</td>
</tr>
<tr>
<td>VGM (µm³)</td>
<td>63,7</td>
<td>91</td>
<td>76,63</td>
</tr>
<tr>
<td>TCMH (%)</td>
<td>17,9</td>
<td>35</td>
<td>26,33</td>
</tr>
<tr>
<td>Taux des GR (millions/ml)</td>
<td>2,9</td>
<td>7,84</td>
<td>5,36</td>
</tr>
</tbody>
</table>

- L’analyse du taux d’hématocrite objective que dans plus de la moitié des cas ce taux est supérieur à 45% ceci s’explique par l’état d’hypoxie chronique.

Figure N° 21 : Répartition des malades en fonction du Taux de l’Hg
En analysant le taux de Globules Rouges, une polyglobulie a été objectivée chez 7 patients soit 35% des cas ayant bénéficié d’une numération formule sanguine.

Un dosage de la calcémie a été réalisé chez 6 malades chez qui on a suspecté un syndrome de Di-George revenant normal dans la totalité des cas ;

Un ionogramme complet a été réalisé chez 13 malades revenant sans particularité ;

Un dosage du fer sérique a été réalisé chez 2 malades dont 1 revenant normal et l’autre diminué avec une valeur de 2,79 mg/l.

E- angioscanner thoracique :

Il a été réalisé chez 7 malades soit 12% des cas dans le cadre du bilan préopératoire; il a permis de bien visualiser les gros vaisseaux, de confirmer le diagnostic de tétralogie de Fallot dans tous les cas et il a mis en évidence une Aorte à droite dans un cas, une atrésie pulmonaire avec des branches très petites dans un cas. Il n’a objectivé des malformations associées à la TF dans aucun cas.

F- IRM et angiographie :

Aucun malade dans notre série n’a bénéficié de ces deux explorations.

G- le caryotype :

Cet examen a été demandé chez 14 malades, chez qui un syndrome malformatif a été suspecté ; mais il n’a été fait que chez 5 malades soit 9% des cas dont les résultats étaient en faveur d’une micro délétion 22q11.

La totalité de ces caryotypes a été réalisée au sein du laboratoire de génétique du CHU de Fès. La Nomenclature de la micro délétion 22q11 est la suivante :

46, XX.ish del (22)(q11.2q11.2)(TUPLE1-)[10] nucish (TUPLE1×1)(ARSA×2)[50]
VI- EVOLUTION SPONTANEE :

A- Décès :

Sur les 55 malades dont l’évolution spontanée a été précisée, nous avons à déplorer le décès de 2 patients. En effet, le premier malade, il s’agit d’une nouveau-née atteinte d’une forme sévère de TF (quasi Atrésie pulmonaire à septum ouvert) décédée suite à un malaise anoxique à domicile à J15 de vie. L’autre cas, il s’agit d’une fillette de 1 an qui a une TF sévère qui s’inscrit dans le cadre du Syndrome de Di-George (caryotype=micro délétion 22q11), décédée à domicile à l’âge d’un an et demi suite à un malaise anoxique grave.

B- Complications :

- Une exagération de la cyanose et de la dyspnée, compliquée par l’apparition des crises anoxiques, a été signalée chez 14 patients soit 25% des cas. Un traitement médical et des mesures de réanimation ont permis la sédation de ces crises.
- Un cas d’ischémie cérébrale secondaire à un bas débit sanguin cérébral.
- Un malade a présenté une infection pulmonaire grave avec détresse respiratoire pour laquelle il a été hospitalisé au service de réanimation où il a été mis sous antibiothérapie à large spectre ; l’évolution était bonne.

C- Recul :

Parmi les 55 malades suivis dans notre étude :

- 21 malades ont été opérés soit 38,2% des cas.
- 25 patients sont suivis régulièrement en consultation en attente d’intervention chirurgicale, soit 45,4% des cas.
- 7 malades sont perdus de vue, soit 12,8% des cas.
- 2 malades décédés soit 3,6% des cas.
VII- TRAITEMENT :

A- traitement médical :

Afin de prévenir les complications pouvant émailler l’évolution spontanée de la TF, un traitement médical a été proposé pour tous les malades suivis en consultation depuis la découverte de leurs cardiopathies.

Dans notre série, le traitement associait en fonction des cas : des bêtabloquants per os (Propanolol), un traitement martial en cas de polyglobulie avec hypochromie, un traitement par aspirine à faible dose, Ainsi :

- Le Propanolol a été prescrit à la dose de 2 à 5 mg/kg/j dans chez 48 malades soit 87%.
- Le traitement martial dans 6 cas (10%).
- L’aspirine dans 4 cas (7,2%).
- La saignée dans 1 cas (1,8%).

Figure N°22: pourcentage des différents médicaments reçus par les malades
B- Traitement chirurgical :

Dans notre série ; 21 malades ont été opérés soit 38,2 % des cas ; ils ont bénéficiés soit de :

yped Une anastomose palliative type « Blalock modifié » dans 2 cas soit 10%;
yped Une réparation complète précédée d’une anastomose palliative dans 3 cas soit 14%;
yped Une cure complète d’emblée dans 16 cas soit 76%

Figure N°23 : Répartition des malades opérés selon le type d’intervention

Les interventions chirurgicales ont été réalisées à l’hôpital Cheikh Zaid (Rabat) dans 6 cas ; au CHU Hassan II Fès dans 5 cas ; à l’hôpital Ibn SINA (Rabat) dans 5 cas ; le reste des interventions ont été réalisées soit dans des établissements privés ou à l’étranger.
a) **Chirurgie palliative :**
Dans notre série, 5 malades ont bénéficié d’une intervention palliative soit 23% des patients opérés.
L’intervention chirurgicale consistait en une anastomose systémique-pulmonaire type « BLALOCK modifié » droite dans tous les cas avec interposition (entre l’artère sous- clavière droite et l’artère pulmonaire droite) d’une prothèse « Gore- tex ».
L’anastomose palliative a été indiquée pour mauvaise tolérance de la cardiopathie et devant l’impossibilité de réaliser une cure complète en urgence.
Elle a été réalisée à trois reprises avant l’âge de 1 an, dans les deux autres cas à l’âge de 2 ans et l’âge de 3 ans et demi.
Tous ces malades sont mis sous traitement antiagrégant plaquettaire à la dose 5mg/Kg/jour.

b) **Chirurgie curative :**
Parmi les 21 malades opérés, 19 malades ont bénéficié d’une cure complète :
- 16 cas de cure complète d’emblée
- 3 cas de cure complète précédée d’une chirurgie palliative avec un intervalle de 2 ans dans 2 cas et 6 ans dans l’autre cas.
Dans notre étude l’âge de l’intervention curative varie entre 5 mois et 16 ans avec moyenne de 4 ans et 5 mois ;
Nous remarquons que la plupart des malades ont été opérés avant l’âge de 5 ans avec 3 cas qui ont été opérés avant l’âge de 1 an ;
Parmi les 19 malades opérés, nous avons pu récupérer les comptes rendus opératoires dans 15 cas. L’analyse de ces derniers a noté que le poids au moment de la cure chirurgicale varie entre 5,75 Kg et 36 Kg avec une moyenne de 16,4 Kg.

La cure complète a comporté deux étapes constantes :

- Fermeture de la CIV péri membraneuse par un patch de Dacron.
- Elargissement infundubulaire par résection première du tissu rétrécissant la voie pulmonaire.

Puis en fonction des cas ; d’autres gestes chirurgicaux ont été réalisés :

- Une comissurotomie pulmonaire par bougie de HEGAR a été réalisée dans 2 cas
- La mise en place d’un tube valvé CONTEGRA dans 1 cas.
- Fermeture d’un foramen ovale perméable (FOP) dans 4 cas ;
- Fermeture d’une CIA dans 3 cas
- Ligature d’un canal artériel perméable dans 3 cas.
- Cure d’une coarctation de l’aorte dans 1 cas (réséction anastomose término- terminale)
VIII- EVOLUTION APRES CHIRURGIE :

A- Après chirurgie palliative :

Chez les 5 cas, dans notre série, qui ont bénéficié d’une intervention palliative :

- L’évolution immédiate en postopératoire était bonne avec disparition de la cyanose ; la diminution de nombre des malaises avec disparition de la dyspnée ; la saturation sanguin en oxygène est passée d’une moyenne de 78% avant le geste à une moyenne de 92% après.

- Un cas de décès per-opératoire a été noté chez un enfant de 1 an qui présente une TF sévère qui s’inscrit dans un tableau poly malformatif associant TF, agénésie du radius et syndactylie.

- Un cas a présenté une thrombose de l’artère fémorale dans des circonstances non précisées.

- L’évolution à long terme a été marquée par la réapparition de la cyanose ; l’augmentation du nombre des malaises anoxiques et la réapparition de la dyspnée à l’effort ; d’où l’indication d’une cure complète réalisée dans 3 cas après 2 ans dans le premier cas ; 3 ans dans le 2ème cas et 6 ans dans le 3ème cas.

B- Après cure complète :

- Suites immédiates :
 - 1 cas de décès per- opératoire.
 - 1 cas opéré en Espagne et qui a présenté une insuffisance cardiaque globale pour laquelle a été hospitalisé au service de réanimation pendant une durée de 7 jours ; une échographie postopératoire a été réalisée objectivant une hypo contractilité du ventricule gauche avec une dilatation du VD et OD associée à une CIV résiduelle de 5 mm ; le malade a été mis sous diurétiques ; IEC ; digitaliques ; et antiagrégants plaquettaires.
o 2 cas d’épanchement péricardique de moyenne abondance ; les deux malades ont été mis sous AINS type Diclofenac sodique pendant 1 mois ; et un diurétique de l’anse et un digitalique ; l’évolution a été marquée par la régression complète de l’épanchement chez 1 cas et la persistance d’un épanchement minime chez l’autre cas d’où la nécessité de prolonger le traitement par Diclofenac jusqu’à 3 mois.

o 1 cas de problème digestif non précisé dont l’évolution était bonne.

Une fois le cap de l’intervention passé, la grande majorité des patients sont déjà très améliorés par rapport à leurs états avant la chirurgie curative.

Ainsi parmi les 18 patients qui ont bénéficié d’une cure complète, une amélioration nette de l’état fonctionnel (disparition de la cyanose, de la dyspnée et disparition des crises anoxiques) a été constatée chez 16 malades soit 88% des cas ; alors que les 2 cas restants ont gardé une dyspnée à l’effort qui entrave l’activité de ces 2 enfants.

v Evolution à moyenne et à long terme :

Dans notre étude la durée moyenne du suivi postopératoire est de 3ans et 3 mois avec des extrêmes de 1mois et 12 ans.

o Sur le plan fonctionnel :
- 16 patients soit 88% des cas ont une bonne évolution (sans cyanose ni dyspnée) avec SaO₂ moyenne de 97%
- 1 cas qui a présenté une cyanose avec une dyspnée stade III NYHA, ces symptômes sont survenus 10 ans après la cure chirurgicale.
- 1 cas a présenté une dyspnée stade II NYHA
- Aucun cas d’insuffisance cardiaque droite.
Sur le plan électrique :

Seulement 3 cas ont bénéficié d’un ECG en postopératoire qui a objectivé :

- un rythme sinusal dans tous les cas
- un cas de bloc de branche droit
- aucun cas de bloc auriculo-ventriculaire n’a été identifié.

Sur le plan échographique :

L’échocardiographie a mis en évidence les lésions résiduelles suivantes :

- Une CIV résiduelle chez 7 malades soit 36% des cas
- Une sténose pulmonaire chez 5 malades soit 27% des cas
- Une dilatation du ventricule droit chez 5 malades soit 27% des cas
- Une insuffisance pulmonaire chez 16 malades soit 88% des cas, dans la plupart des cas était minime.
- Une hypo contractilité du VG gauche dans 1 cas
- Une insuffisance aortique minime chez 3 malades soit 16% des cas.
- Une insuffisance tricuspide chez 4 malades soit 22% des cas.
- Une CIA minime shuntant gauche-droit chez 1 malade.
- Fuite tricuspide minime dans un cas.

En ce qui concerne l’insertion sociale des malades opérés, elle a été rarement mentionnée dans nos dossiers. Ainsi parmi les 8 malades qui ont un âge supérieur à 6 ans ; seuls 3 malades sont scolarisés.
Tableau N° 8 : pourcentage des différentes lésions résiduelles après cure complète

<table>
<thead>
<tr>
<th></th>
<th>Nombre de cas</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV résiduelle</td>
<td>7</td>
<td>36%</td>
</tr>
<tr>
<td>Sténose pulmonaire résiduelle</td>
<td>5</td>
<td>27%</td>
</tr>
<tr>
<td>Dilatation du ventricule droit</td>
<td>5</td>
<td>27%</td>
</tr>
<tr>
<td>Insuffisance pulmonaire</td>
<td>16</td>
<td>88%</td>
</tr>
<tr>
<td>Hypo contractilité du VG</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>Insuffisance Aortique minime</td>
<td>3</td>
<td>16%</td>
</tr>
<tr>
<td>Insuffisance tricuspide</td>
<td>4</td>
<td>22%</td>
</tr>
<tr>
<td>CIA shuntant droit- gauche</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>Fuite tricuspide</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>
DISCUSSION
Notre étude s’est étalée sur une période de 4 ans 2008-2011 ; elle a intéressé 55 malades atteints de téralogie de Fallot ; le chiffre aurait été plus grand mais vu que les malades ne sont vues qu’en consultation rarement hospitalisés et vu que notre CHU ne dispose que récemment d’une unité de chirurgie cardiaque pédiatrique ce qui a imposé le transfert de nos malades vers les centres hospitaliers de rabat ou de Casablanca ou en étranger.

I- EPIDEMIOLOGIE :

A- fréquence de la TF :

Selon FRIEDLI [6], La téralogie de Fallot est la plus fréquente des cardiopathies cyanogènes. Elle représente, selon les statistiques, 5 % à 8 % des cardiopathies congénitales.

Cette fréquence annoncée dans la littérature est confirmée par plusieurs études dont la notre. (Tableau N°8)

Tableau N°8: La fréquence de la TF par rapport à l’ensemble des cardiopathies congénitales selon les différents auteurs

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>Fréquence de la TF par apport aux cardiopathies congénitales</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIBHUTI ET AL [13]</td>
<td>USA</td>
<td>10%</td>
</tr>
<tr>
<td>STEPHESEN [14]</td>
<td>IRELAND</td>
<td>3%</td>
</tr>
<tr>
<td>ISELIN [3]</td>
<td>FRANCE</td>
<td>5,8%</td>
</tr>
<tr>
<td>SIDIBE [15]</td>
<td>MALI</td>
<td>5%</td>
</tr>
<tr>
<td>ABOU CHARAF [16]</td>
<td>LIBAN</td>
<td>17,2%</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>15,2%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>CASABLANCA</td>
<td>7,95%</td>
</tr>
<tr>
<td>Notre série</td>
<td>FÈS</td>
<td>6,1%</td>
</tr>
</tbody>
</table>
B- Répartition géographie :

Nous rappelons que plus de 60% de nos malades sont originaires de Fès et régions alors que le reste est originaire des régions Nord- Est ;

Ces résultats sont raisonnables vu que ces deux régions sont drainées vers le CHU Hassan II de Fès.

C- Age de découverte :

Dans notre série, l’âge moyen de diagnostic est de 2 ans et 6 mois ; cet âge avancé avoisine celui signalé dans les séries maghrébines et il est nettement élevé par rapport à celui retrouvé dans les séries occidentales (Tableau N°9).

Tableau N° 9 : Age moyen de découverte de la TF dans les différentes séries maghrébines et occidentales

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu d’étude</th>
<th>Age moyen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEED [20]</td>
<td>ETATS- UNIS</td>
<td>4,9 mois</td>
</tr>
<tr>
<td>GUIRGIS [21]</td>
<td>FRANCE</td>
<td>3,7 mois</td>
</tr>
<tr>
<td>ALEXIOU [22]</td>
<td>ANGLETERRE</td>
<td>6,3 mois</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>2 ans et 2 mois</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>CASABLANCA</td>
<td>2 ans et 9 mois</td>
</tr>
<tr>
<td>ABID [23]</td>
<td>TUNESIE</td>
<td>2 ans et 2 mois</td>
</tr>
<tr>
<td>KHALEF et al [24]</td>
<td>TUNESIE</td>
<td>9 mois</td>
</tr>
<tr>
<td>Notre série</td>
<td>FES</td>
<td>2 ans et 3 mois</td>
</tr>
</tbody>
</table>

Cependant ; l’âge de recrutement des malades au sein de notre structure hospitalière est en net abaissement puisque dans notre série environ la moitié des cas ont été diagnostiqués avant l’âge de 1 an.
Cet abaissement de l’âge de diagnostic de la TF dans notre série est dû à la disponibilité au sein du CHU de Fès d’une unité de cardiologie avec des praticiens expérimentés et vu la sensibilisation de nos médecins quant à l’intérêt du dépistage systématique des cardiopathies congénitales ; mais ceci n’empêche pas d’améliorer encore notre démarche diagnostic surtout avec l’avènement de la nouvelle unité de chirurgie cardiaque infantile au sein du CHU.

D- Sexe :

Dans la littérature, la plupart des auteurs ont constaté que la tétralogie de Fallot atteint plus fréquemment les sujets de sexe masculin. Cette prédominance masculine est effectivement confirmée dans notre série.

Tableau N° 10: Comparaison du pourcentage du sexe masculin de notre série avec les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>% de sexe masculin</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAUSHAL [25]</td>
<td>INDE</td>
<td>69%</td>
</tr>
<tr>
<td>SARUBBI [26]</td>
<td>ITALIE</td>
<td>70,7%</td>
</tr>
<tr>
<td>KHALEF ET AL [24]</td>
<td>TUNISIE</td>
<td>57%</td>
</tr>
<tr>
<td>COBANGOLU [27]</td>
<td>ETATS UNIS</td>
<td>63%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>CASABLANCA</td>
<td>62%</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>60%</td>
</tr>
<tr>
<td>Notre série</td>
<td>FÈS</td>
<td>62%</td>
</tr>
</tbody>
</table>
E- Couverture sociale :

Dans notre série, seuls 11% des malades sont mutualistes ; cette absence de couverture sociale et le manque des moyens financiers retardent la cure chirurgicale chez un bon nombre de nos malades et rentrent même dans le choix et l’indication du traitement chirurgical, seul l’intervention de quelques associations rend possible la réalisation de quelques actes chirurgicaux.

Ce constat a été remarqué dans l’étude de HAKKOU [18] à Rabat qui a constaté que seulement 8,8% des malades sont sous couverture médicale ce qui dit que ce problème se voit à l’échelon nation ce qui nécessite une intervention d’une politique nationale de santé publique en faveur de ces enfants.

II- ÉTHIOPATHOGENIE :

Les cardiopathies congénitales répondent en général à une étiologie multifactorielle, ceci est le cas dans la tétralogie de Fallot.

La tendance qui prévaut actuellement est de considérer que la tétralogie de Fallot est le résultat de la combinaison de deux principaux facteurs ; un facteur génétique à qui s'ajoute un facteur environnemental au moment de l'organogenèse cardiaque. [6] [3] [28]

A- Les facteurs environnementaux :

C’est dans les deux premiers mois de la gestation que leur action serait susceptible d’entrainer cette malformation ; ces facteurs sont :

- Les antécédents maternels notamment :

 F Le diabète qui augmente le risque de tout type de malformation et de cardiopathie en particulier la Tétralogie de Fallot. Ce facteur a été objectivé dans notre étude chez 2 patientes ; de même que la série de HAKKOU [18]
qui a rapporté 1 seul cas de diabète maternel, mais selon ISELIN [3] le diabète maternel ne peut pas expliquer la TF.

L’infection par le virus de la rubéole qui n’a été notée chez aucun malade de notre série

Epilepsie qui, selon Robert GNANZIA [28], multiplie par trois le risque de malformations cardiaques, mais selon le même auteur c’est difficile de faire la part de la maladie et de son traitement de cet accroissement de risque de CC ; mais le risque est plus important chez les femmes traitées.

La prise médicamenteuse notamment les hormones sexuelles (y compris celles de la contraception orale); la thalidomide (antinéoplasique); isotrétinoïne (anti acnéique) et l’hydantoine. [28]

Toxiques : notamment l’exposition aux pesticides et les herbicides qui a été rapportée dans l’étude de LOFFREDO et al [29], un auteur suédois (Källen [30]) a rapporté une notion de relation entre le tabagisme au cours du premier trimestre et la survenue des cardiopathies congénitales. Dans notre étude aucun cas d’exposition à ces toxiques n’a été objectivé.

B- Les facteurs génétiques :

La consanguinité est le facteur étiologique le plus souvent retrouvée chez nos malades. En effet, elle a été signalée dans 33% des cas, nous remarquons alors que cette proportion est équivalente à celle retrouvée par HAKKOU [18] où la consanguinité relevée dans 21,6% des cas ; alors que dans la série de SAAD [19], elle atteignait 17,6% Ce facteur suggère une transmission suivant les lois de l’hérédité mendélienne, et offre un terrain propice pour une étude génétique. Par contre Becker et al [31] était contre cet avis vu que son étude, qui a inclus 849 cas de cardiopathies congénitales
collectées à l’hôpital Amir Fahd en Arabie Saoudite, n’a pas mis en évidence une relation entre la consanguinité et la TF.

Vu la fréquence des anomalies chromosomiques, plusieurs études ont recherché une anomalie génétique propre à la TF mais en vain.

Cependant, il est apparu qu’une aberration chromosomique mineure soit assez souvent à la base des malformations conotroncales dont fait partie la TF : il s’agit de la micro délétion du chromosome 22 (microdel22q11).

La micro délétion de chromosome 22 (22q11), ou le syndrome de Di-George ou le syndrome cardio-velo-facial, se manifeste par : [28]

- une atteinte cardiaque dont la TF
- une hypoplasie ou agénésie du thymus avec déficit en lymphocytes T (CD3, CD4 et CD8) entraînant une sensibilité aux infections et des manifestations cliniques d’auto-immunité.
- Un faciès particulier souvent discret associant une fentes palpébrales étroites, racine du nez saillante, pommettes aplaties, pointe du nez volumineuse contrastant avec des ailes du nez petites, long philtrum, petite bouche, rétrognathisme, oreilles bas implantées et à orientation en haut et en arrière, une fente labio-palatine ou palatine.
- une inconstante et transitoire hypocalcémie pouvant entraîner des convulsions (essentiellement pendant la première année de vie).

Le syndrome de la délétion 22q11.2 (del22q11) résulte généralement d’une micro délétion de novo d’environ 3Mb sur le bras long (q) du chromosome 22 en position 22q11.2. Les formes familiales surviennent dans environ 10 %des cas et sont transmises sur le mode autosomique dominant. [98] [99]

Le diagnostic se fait par étude cytogénétique moléculaire (FISH) qui est capital pour l’exploration des syndromes microdélétionnels ayant pour but la confirmation du
diagnostic, le conseil génétique et la prise en charge qui est le plus souvent multidisciplinaire. [97]

Ainsi dans notre série, l’étude cytogénétique moléculaire (FISH) a été réalisée chez 5 malades soit 9% des cas, réalisées toutes au sein du laboratoire de cytogénétique du CHU Hassan II de Fès, tous les résultats sont revenus en faveur d’une micro délétion 22q11. (Figure N°25)

![Figure N°25: Présence d’une micro délétion hémizygote en position 22q11.2 : Syndrome de délétion 22q11 (la flèche montre l’absence du spot rouge sur un des deux chromosomes 22)](image)

(Photo prise au laboratoire de cytogénétique CHU Hassan II Fès)
Photo d’un enfant de notre série présentant un syndrome de micro délétion 22q11 : il présente un nez tubulaire, des arêtes nasales larges et proéminentes et des narines antéversées, des oreilles petites, mal ourlées, décollées et bas implantées, un philtrum court.

Photos prises au service de pédiatrie CHU Hassan II Fès

Photo d’un enfant de notre série présentant un syndrome de micro délétion 22q11 avec une légère dysmorphie faciale.

Photos prise au service de pédiatrie CHU Hassan II Fès
Photo d’un enfant de notre série présentant un syndrome de Micro délétion 22q11 avec un faciès particulier : racine du nez saillante, pointe du nez volumineuse contrastant avec des ailes du nez petites, long philtrum, petite bouche, Rétrognathisme, oreilles bas implantées et à orientation en haut et en arrière.

Photo prise au service de pédiatrie CHU Hassan II Fès

Photo d’un enfant de notre série présentant un syndrome Micro délétion 22q11 : Notez en particulier la racine du nez proéminente et le contraste entre la pointe du nez relativement volumineuse par rapport aux ailes du nez, Rétrognathisme, oreilles bas implantées et à orientation en haut et en arrière.

Photo prise au service de pédiatrie CHU Hassan II Fès
Plusieurs études ont mis en évidence la responsabilité des anomalies chromosomiques notamment de la micro délétion 22q11 dans la genèse de la tétralogie de Fallot. En effet ces anomalies sont incriminées dans 8% des cas selon COBANOGLU [27] ; et 8,8% des cas selon Michelon [32] et 9,8% des cas dans l’étude de HAKKOU [18] ce qui rejoint les résultats retrouvés dans notre étude. (Tableau N°11)

Tableau N°11 : Pourcentage de la micro délétion 22q11 associée à la TF dans les différentes séries

<table>
<thead>
<tr>
<th>Auteurs</th>
<th>Lieu de l’étude</th>
<th>% de la micro délétion 22q11</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBANOGLU [27]</td>
<td>USA</td>
<td>8%</td>
</tr>
<tr>
<td>MICHEILON [32]</td>
<td>ITALIE</td>
<td>8,8%</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>9,8%</td>
</tr>
<tr>
<td>Notre série</td>
<td>FÈS</td>
<td>9%</td>
</tr>
</tbody>
</table>

A noter que dans notre étude, d’autres syndromes dysmorphiques ont été détectés notamment la Trisomie 21 chez 4 patients soit 7,2% des cas, mais malheureusement n’ayant pas bénéficié d’un caryotype vu le manque de moyens. Ce pourcentage est proche de celui retrouvé dans l’étude de COBANOGLU [27] qui est de 11% et de celui de MICHEILON [32] qui est de 4,3%; dans ces séries le diagnostic est confirmé par un caryotype systématique.
III- MANIFESTATIONS CLINIQUES :

Les signes fonctionnels sont constants dans notre série ; ils sont associés à des proportions différentes : cyanose, dyspnée, hippocratisme digital, squatting, malaises anoxiques, infections respiratoires à répétition.

Ces signes n’amènent les parents à consulter que lorsqu’ils deviennent patents ; ainsi dans notre série ; l’âge moyen de consultation est de 2 ans et 7 mois qui est nettement avancé par rapport à l’âge moyen d’apparition des symptômes qui est de 8 mois ; le même constat a été rapporté dans la série de HAKKOU [18].

Dans les séries occidentales, il est devenu rare que le diagnostic soit porté devant ces signes cliniques vu que celui-ci est réalisé soit en anténatal grâce au développement de l’échographie soit en période néonatale grâce à un dépistage systématique par simple auscultation de tout nouveau-né. [6]

La cyanose : c’est le signe principal, il s’agit d’une cyanose centrale et réfractaire ; qui n’est pas présente à la naissance sauf dans des cas sévères. Elle apparaît au cours des 6 premiers mois de vie de façon progressive. Ce signe n’est pas constant, certains malades roses au repos ne sont cyanosés qu’à l’effort ou aux cris.

Ce constat a été objectivé dans nos études, ainsi la quasi-totalité de nos malades présentent une cyanose ; absente seulement chez deux malades.

La cyanose est rapportée dans 100% des cas dans les séries de ABID [23] et de PIECHAUD [34]. Quant au cas roses, ils sont observés chez 11% des cas dans la série d’ALEXIOU [22] et chez 9% des cas dans celle de BEN KHALAFALLAH [35].

La saturation artérielle en oxygène (SaO2) évalue le degré d’hypoxie, ainsi la SaO2 moyenne au repos dans notre cohorte est de 76% qui s’élève à 86% sous oxygène ce qui est comparable à celle retrouvée dans les différentes séries.
Les crises (ou malaises) hypoxiques : sont caractéristiques de la tétralogie de Fallot. Elles peuvent apparaître dans la première année de vie, mais sont plus fréquentes après l'âge de 1 an. On observe une accentuation rapide de la cyanose, accompagnée de tachypnée. Dans les formes graves, il y a perte de connaissance. La crise hypoxique peut apparaître à n'importe quel moment de la journée, mais s'observe plus particulièrement le matin au lever, ou lors des stress : pleurs, colère, agitation, douleur, fièvre, hypothermie, hypotension, Hammam [6]

Le souffle systolique disparaît à l'auscultation, ce qui témoigne d'une fermeture de l'infundibulum.

Bien que les crises hypoxiques puissent être contrôlées par les bétabloquants, leur apparition doit être considérée comme une indication à un acte chirurgical urgent, parce qu’ils peuvent se compliquer d’un accident neurologique ou de mort subite.

Tableau N° 12: Comparaison du pourcentage des malaises anoxiques entre les différentes études

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>% des malaises</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>63%</td>
</tr>
<tr>
<td>ABID [23]</td>
<td>TUNISIE</td>
<td>77%</td>
</tr>
<tr>
<td>PIECHAUD [34]</td>
<td>FRANCE</td>
<td>16%</td>
</tr>
<tr>
<td>Notre étude</td>
<td>FES</td>
<td>38,5%</td>
</tr>
</tbody>
</table>

Dans notre série, on n’a trouvé aucune corrélation entre la survenue des malaises anoxiques et le degré de la cyanose (Figure N°26) ; en effet les malaises ne sont pas l’apanage exclusif des TF très cyanogènes et peuvent être observés dans les formes où la cyanose est modérée ou même peu apparente au repos. On pense que dans ces cas, l’infundibulum est particulièrement réactif aux différents stimuli qui induisent sa contraction. On n’a pas trouvé, non plus de corrélation significative entre la survenue de ces malaises et la forme anatomique de la Tétralogie de Fallot.
Ce constat a été rapporté dans la série de HAKKOU [18] et dans la série de DUPUIS [8].

Figure N°26 : saturation sanguine en O2 chez les malades présentant des malaises anoxiques

F Les autres signes cliniques : (la dyspnée, hippocratismes digital, le squatting, le retard staturo-pondéral et psychomoteur) qualifiés par certains auteurs de «signes historiques» ne sont plus rapportés dans les séries occidentales, vu l’âge précoce du diagnostic et de la prise en charge chirurgicale de la malformation dans ces pays. Ces signes sont malheureusement encore fréquents dans les séries maghrébines dont la notre.

F L’auscultation du cœur : est dominée par la présence d’un souffle systolique éjectionnel de sténose pulmonaire, la longueur du souffle dépend du degré de la sténose : un souffle long traduit une sténose modérément sévère ; un souffle court, en revanche, indique que la sténose est très sévère et que l’infundibulum se ferme en systole, arrêtant tout flux. En cas de crise hypoxique le souffle disparaît. Dans nos études la quasi-totalité de nos malades présentent un souffle de sténose pulmonaire.
IV- EXAMENS PARACLINIQUES :

La radiographie du thorax, l’électrocardiogramme et le bilan biologique sont actuellement des examens de routine réalisés de façon systématique dans les pays occidentaux ; ceci afin d’orienter la démarche diagnostique et d’évaluer le degré de tolérance de la cardiopathie.

En ce qui concerne le diagnostic positif de la TF, plusieurs examens paracliniques sont aujourd’hui disponibles dont le pilier est l’échocardiographie mais on dispose également de l’angioscanner, l’imagerie par résonance magnétique et du cathétérisme cardiaque.

A- L’échocardiographie :

L’échocardiographie avec ses différents modes (Temps-Mouvement, Bidimensionnel et Doppler) pose aisément le diagnostic de TF en post-natal, mais aussi en prénatal.

1- **Diagnostic post-natal :**

Comme dans notre étude, l’échocardiographie couplée au Doppler a permis de confirmer le diagnostic de TF dans toutes les séries étrangères.

En effet après avoir insisté sur le caractère non invasif de cet examen paraclinique, tous les auteurs confirment sa fiabilité (surtout en mode 2D et Doppler) dans le diagnostic positif de la TF. [36]

En mode bidimensionnel, en coupe parasternale gauche grand axe, l’écho-cœur permet de mettre en évidence :

- La CIV péri membraneuse souvent large et unique. (Figure N°27)
- Le chevauchement de l’aorte dont elle précise le degré. (Figure N°28)
- La sténose infundibulo-pulmonaire avec la possibilité de mesurer la taille de l’anneau, le diamètre du tronc de l’artère pulmonaire et celui des
branches pulmonaires (Figure N°29) (donnée fondamentale pour les décisions thérapeutiques ultérieures). Ces mesures sont mieux appréciées en coupe parasternale gauche petit axe ou en sous-costal.

- L’hypertrophie ventriculaire droite (visible aussi en mode TM).
- Les anomalies de naissance des artères coronaires.

Quant au mode Doppler, il permet de confirmer : (Figure N°30)

- La CIV (doppler couleur) en donnant le sens du shunt, souvent bidirectionnelle vu l’égalité de pression, et la possibilité de CIV multiple.
- L’importance de la sténose de la voie pulmonaire en déterminant le gradient de pression trans-sténotique.
- L’existence de sténose des branches pulmonaires.
- L’existence d’une insuffisance aortique.

A coté du diagnostic positif de la TF, l’écho-cœur permet également de déterminer la forme de la TF ; ainsi on distingue deux formes : [37][38]

- La forme régulière caractérisée par une voie pulmonaire harmonieuse, une CIV antérieure unique et une distribution coronaire normale ; elle a été objectivée chez 67% de nos malades.
- La forme irrégulière ; où on note une voie pulmonaire franchement hypoplasique ou présentant des sténoses des branches, surtout la gauche, des anomalies coronaires et/ou des CIV multiples ; ce qui représente 33% de nos patients.

Cette classification est obligatoire pour le choix de la technique opératoire.

Elle permet également de mettre en évidence des lésions associées à la tétralogie de Fallot, elles sont notées chez 45% des malades, cette fréquence élevée est confirmée dans les différentes séries ;
Tableau N°13 : Fréquence des malformations cardiovasculaires associées à la TF dans les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu d’étude</th>
<th>%d’anomalies cardiovasculaires associées</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBANOGLU [27]</td>
<td>ETATS-UNIS</td>
<td>60%</td>
</tr>
<tr>
<td>MARINO [39]</td>
<td>ITALIE</td>
<td>30,6%</td>
</tr>
<tr>
<td>NOLLERT [40]</td>
<td>ALLEMAGNE</td>
<td>43,7%</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>36,1</td>
</tr>
<tr>
<td>Notre étude</td>
<td>FES</td>
<td>45%</td>
</tr>
</tbody>
</table>

En ce qui concerne l’efficacité de l’écho-cœur dans la mise en évidence d’une éventuelle anomalie du trajet des artères coronaires, celle-ci reste très discutée.

Certains auteurs tels que GUERRIN [43] ou GUPTA [45] pensent que beaucoup d’anomalies coronaires échappent à l’échocardiographie et ne sont diagnostiquées que lors de l’angiographie cardiaque voire en per-opératoire. Ce qui a été confirmé dans la série de SAAD [19] où 5 cas d’anomalies coronaires sont passés inaperçus à l’écho-cœur ; alors que dans notre série ; elles ont été suspectées chez 3 malades qui n’ont pas bénéficié de cathétérisme cardiaque. Ces anomalies sont plus fréquentes dans les séries occidentales ; 12% dans la série de GODART [41], 13% dans la série de COBANOGLU [27].

La fréquence des CIV multiples est de 3,6% dans notre série, fréquence relativement faible, un peu plus élevée que celle retrouvée dans la littérature: dans la série de NOLLERT [40] 0,4 % des cas, de MARINO [39] 0,66% des cas alors qu’elle est proche de celle de HAKKOU [18] 2,9%
Figure N°27 : écho- cœur en coupe sous costale montrant une CIV péri membraneuse avec une Aorte à cheval sur la CIV avec une HVD

(Unité de cardiologie du service de pédiatrie CHU Hassan II Fès)
Figure N° 28: Echo- cœur en coupe para sternale gauche montrant la CIV par Malalignement avec une aorte à cheval sur la CIV

(Unité de cardiologie du service de pédiatrie CHU Hassan II Fès)
Figure N°29 : Coupe para sternale montrant une sténose de l’artère pulmonaire et de ses branches

(Unité de cardiologie du service de pédiatrie CHU Hassan II Fès)
Figure N° 30: écho doppler montrant une sténose pulmonaire avec un gradient transvalvulaire max $G_{\text{max}}=97 \ \text{mm hg}$

(Unité de cardiologie du service de pédiatrie CHU Hassan II Fès)
2- Diagnostic anténatal :

Si l’échocardiographie est actuellement l’examen de référence pour poser le diagnostic de la TF et ce quelque soit l’âge du patient, le développement de cet examen non invasif permet actuellement d’assurer le diagnostic anténatal de cette cardiopathie. [46]

La période située entre la 20\èrne et la 22\èrne semaine de grossesse paraît la mieux adaptée pour réaliser le dépistage anténatal d’une TF. En effet compte tenu de la résolution des appareils actuels, c’est à cette date que la taille du cœur fœtal est suffisamment grande pour permettre une étude des structures cardiaques (15 à 20mm de diamètre). D’autre part, l’augmentation de la mobilité fœtale à ce moment de la grossesse permet d’obtenir une grande variété d’incidences écho cardiographiques et donc une analyse plus complète. En cas de suspicion d’une anomalie, on dispose ainsi d’un délai suffisant pour réaliser d’autres explorations, notamment un caryotype fœtal. [44]

Selon BOUDJEMLINE [33] la TF représente 35,6% des cardiopathies conotroncales détectées en prénatal, soit 5% de l’ensemble des cardiopathies détectées.

Selon ISELIN [46], même si l’échocardiographie permet un dépistage anténatal de la TF, le diagnostic lésionnel reste souvent incomplet.

En effet, si on peut analyser assez finement l’obstacle à l’éjection droite (sténose infundubulaire, valvulaire, tailles de l’anneau et du tronc pulmonaire), il est quasiment impossible d’évaluer avec précision l’état des branches pulmonaires, l’existence de CIV multiples ou d’une anomalie de disposition des coronaires. Ce sont pourtant ces malformations qui conditionnent le pronostic chirurgical de cette cardiopathie.

Selon SIDI [48] malgré un bilan lésionnel incomplet, l’impact du dépistage anténatal de la TF par échocardiographie est très important. Il permet de discuter une interruption de la grossesse si la TF s’intègre dans un syndrome poly malformatif,
sinon il permet de programmer l’accouchement au sein d’une maternité niveau III proche d’une unité de cardiologie pédiatrique ce qui va permettre de prendre en charge adéquatement du nourrisson en période néonatale.

Le rendement insuffisant de l’échocardiographie de dépistage a permis la recherche d’autres méthodes alternatives notamment l’échocardiographie tridimensionnelle qui est une nouvelle approche de cœur foetal sans exigence particulière au moment de l’enregistrement.

Dans notre série aucun cas n’a été diagnostiqué en anténatal puisque l’échographie morphologique foetale, qui est réalisée systématiquement dans les pays occidentaux, est loin d’être de pratique courante dans notre pays.

B- Radiographie du thorax :

Les deux caractéristiques radiologiques de la tétralogie sont l’hypo perfusion pulmonaire et le « cœur en sabot » (Figure N° 31). Cette silhouette typique, qui n’est cependant pas constante, se caractérise par une pointe surélevée (hypertrophie ventriculaire droite) et un arc moyen concave (hypoplasie du tronc pulmonaire). Le bouton aortique est proéminent (dilatation de l’aorte). L’arc aortique droit est observé dans un quart des cas. La cardiomégalie est absente ou peu importante.

Dans notre série l’aspect de « cœur en sabot » est noté chez 87% des malades alors que dans la série de HAKKOU était de 54,9%; une cardiomégalie a été objectivée dans 23%des cas qui était modérée dans la majorité des cas. La plupart ont eu un cliché en position couchée.

L’hypo perfusion pulmonaire est signalée dans 44%des cas ; la vascularisation est conservée dans 56%des cas.
Figure N°31 : Radiographie pulmonaire de face montrant l’aspect de « cœur en sabot » caractéristique de la TF

(service pédiatrie CHU HASSAN II Fès)
C- **Electrocardiogramme** :

L'électrocardiogramme montre :

- une déviation axiale droite de 120° à 150°.
- Les signes d'hypertrophie auriculaire droite sont inconstants.

Dans notre série l'HVD a été notée chez 76% des cas alors qu'elle était de 100% dans la série de HAKKOU et de même que dans la série de SAAD.

Aucun cas d’hypertrophie auriculaire droite n’a été objectivé dans notre étude alors qu’elle est de 17,6% dans l’étude de HAKKOU et de 25% dans celle de SAAD [19]. Selon DUPUIS [8], elle est exceptionnelle chez le nourrisson, rare chez l’enfant, alors qu’elle est très fréquente chez l’adolescent et l’adulte jeune.

Le rythme est sinusal chez tous nos patients ; un seul cas de bloc de branche droite a été noté en préopératoire.
D- Examens biologiques :

Selon Friedli [6] ; la polyglobulie, forme d'adaptation à toute hypoxie chronique, est constante dans la tétrologie de Fallot. Elle se développe progressivement et son importance permet d'estimer le degré d'hypoxie. Cette adaptation est bénéfique puisqu'elle permet d'augmenter la capacité de transport de l'oxygène. Cependant, à partir d'un certain degré de polyglobulie, la viscosité du sang s'accroît à tel point que le débit cardiaque s'en trouve réduit. La capacité de transport de l'oxygène baisse alors. Le seuil critique au-delà duquel la polyglobulie n'est plus bénéfique se situe aux alentours de 65 %. Une carence martiale entraîne une polyglobulie avec hypochromie et microcytose. Elle peut s'observer à tout âge, mais particulièrement chez le nourrisson. Une concentration moyenne corpusculaire en hémoglobine inférieure à 30 % est défavorable et appelle un traitement martial. En effet, la polyglobulie hypochrome peut favoriser les accidents cérébrovasculaires.

Lors de cyanose et de polyglobulie sévère, on observe également des troubles de la coagulation. Il s'agit d'une part de thrombopénie, d'autre part d'un abaissement des facteurs de coagulation. Alors que la tendance hémorragique est faible chez l'enfant non opéré, les troubles de la crase peuvent conduire à d'importantes hémorragies dans la période postopératoire immédiate.

Dans notre série, le bilan biologique n'a été réalisé que dans 33,3% des cas ; la valeur moyenne de l'hématocrite est de 40% avec un maxima de 56% ; dans les autres séries elle est nettement supérieure. (Tableau N°15)
Tableau N°15 : Comparaison de la valeur moyenne et du maxima de l’hématocrite entre les différentes études

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>Moyenne de l’hématocrite</th>
<th>Valeur maxima de l’hématocrite</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>50,5%</td>
<td>82,2%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>CASABLANCA</td>
<td>47,9%</td>
<td>75%</td>
</tr>
<tr>
<td>ABID [23]</td>
<td>TUNISIE</td>
<td>51%</td>
<td>69%</td>
</tr>
<tr>
<td>Notre série</td>
<td>FES</td>
<td>40%</td>
<td>56%</td>
</tr>
</tbody>
</table>

Ces résultats peuvent être expliqués par le nombre limité des patients qui ont bénéficié d’une NFS dans notre étude due au manque de moyen.

E- Angiographie- cathétérisme cardiaque :

L'imagerie non invasive permet de nos jours de présenter une majorité d'enfants au chirurgien sans cathétérisme. C'est vrai surtout pour le nourrisson, où l'anatomie est particulièrement bien détaillée par l'échographie et si besoin l'angioscanner. En cas de crises hypoxiques mal contrôlées, le cathétérisme peut par ailleurs présenter des risques ; il est donc avantageux de pouvoir y renoncer. S'il existe un doute sur l'arborisation des artères pulmonaires ou sur l'anatomie des artères coronaires, le cathétérisme garde toute sa valeur.

L'angiographie montre mieux que toute autre méthode la voie de chasse droite et les artères pulmonaires jusqu'en périphérie. L'examen hémodynamique révèle une égalisation des pressions systoliques dans les deux ventricules. (Figure N°32)
S'il existe un doute sur l'origine et l'arborisation des artères coronaires, une coronarographie sélective est effectuée pour détecter une éventuelle anomalie des coronaires. Cette information est utile au chirurgien surtout en cas de reprise chirurgicale, les adhérences péricardiques ne permettant pas une bonne vu des artères coronaires à l'ouverture du thorax. [6]

Dans notre série aucun cas n’a bénéficié de l’angiographie-cathétérisme cardiaque vu l’absence au sein de notre CHU d’unité spécialisée et le cou élevé de ce type d’investigation et vu le développement de l’échographie cardiaque et la nouvelle tendance à utiliser l’Angioscanner et l’imagerie par raisonnante magnétique.

Dans les séries étrangères, elle est considérée en complément à l’écho-cœur comme pilier de diagnostic, ainsi il fut indiqué chez 55% des patients dans la série de COBANOGLU [27], 79% des cas dans la série de ATIK [50] et 93% des cas dans la série de GUERRIN [43].
Figure N°32 :

Ciné angiographie du ventricule droit. [6]

A, B : Vues de face et de profil d'une patiente avec une sténose infundubulaire seulement. Les artères pulmonaires sont de bonne taille. L'aorte s'opacifie faiblement (shunt droite-gauche peu important).

C : Forme avec sténose du tronc de l'artère pulmonaire et de la bifurcation. L'aorte est fortement opacifiée, l'arc aortique est à droite
F- Angioscanner:

L’exploration des cardiopathies congénitales par angioscanographie est une nouvelle technique proposée en complément à l’échographie cardiaque et de l’angiographie.

Selon Sigal-Cinqualbre [52]; L’imagerie en coupe fourni par le scanner apporte donc, outre le caractère peu invasif, une imagerie tridimensionnelle permettant une analyse dans tous les plans des rapports anatomiques et une visualisation dans l’espace des anomalies cardiaques complexes. Ainsi il permet d’évaluer la topographie exacte des sténoses artérielles pulmonaires à distance d’une cure complète pour le bon positionnement d’un stent. Cette évaluation est surtout utile quand la sténose siège à proximité de la bifurcation pulmonaire.

En outre, cette technique permet une meilleure évaluation des artères coronaires chez l’enfant dès le plus jeune âge, grâce aux appareils de dernière génération (« 64 barrettes » et, notamment, le SMC « double tube ») grâce à sa résolution spatiale et temporelle élevée et aux acquisitions au temps systolique qui permettent de s’affranchir du rythme cardiaque élevé chez les nouveau-nés. (Figure N°34)

Selon PAUL et al [53]; la topographie des artères coronaires dans la tétralogie de Fallot est différente de la topographie habituelle en raison de la rotation aortique. Si l’on compare la coupe axiale aortique à un cadran horaire, la coronaire droite naît le plus souvent à 1 heure (position antéro-gauche) et le tronc commun gauche à 6 heures (naissance postérieure). Lorsqu’elle existe (environ un tiers des cas) le scanner doit pouvoir détecter une artère coronaire gauche naissant de la droite et croisant l’infundibulum pulmonaire. Il y’a en effet un risque important de lésion coronaire en cas de ventriculotomie droite, cette information est donc essentielle et doit être recherchée de façon systématique.
Selon SATO [54], le scanner multi-barrettes est plus performant dans l’analyse des artères coronaires que l’IRM vu que cette dernière a une résolution spatiale limitée.

Selon CORNO et al [103], l’angioscanner doit préciser, selon le type d’intervention chirurgicale (palliative ou curative), un certain nombre d’éléments, ainsi si un geste palliatif a été indiqué l’angioscanner doit préciser le côté de la crosse de l’aorte, présence d’une artère sous-clavière anormale, taille et la morphologie des artères pulmonaires, et en particulier la présence de sténose à l’origine de l’un d’entre eux. Si un geste curatif a été indiqué d’emblé l’angioscanner doit préciser la taille et la morphologie ventriculaire droite, de toutes les voies de sortie ; la valve pulmonaire et l’anneau ; état de l’artère pulmonaire et de ses branches ; l’origine et l’évolution de l’artère coronaire principale en particulier la présence d’une branche en avant de l’infundibulum.

Ainsi dans notre étude le scanner a été réalisé chez 7 malades chez qui on a suspecté soit une anomalie des coronaires ou qui ont une hypoplasie sévère des branches pulmonaires à l’écho-coeur dont l’angioscanner a permis d’évaluer le diamètre.(Figure N°33)
Figure N° 33:

A- coupe scannographique axial montrant une sténose de l’artère pulmonaire intéressant le tronc et la partie proximale des artères pulmonaires sous forme d’un rétrécissement étendu.

B- Reconstruction 3D montrant une crosse aortique à droite avec une origine normale des artères coronaires.

(Service de radiologie CHU Hassan II Fès)
Figure N°33’ : Angioscanner d’un malade de notre série présentant une sténose des branches de l’artère pulmonaire avec une naissance normale de l’artère coronaire

(Service de radiologie CHU Hassan II Fès)
AP : artère pulmonaire
APG : artère pulmonaire gauche
APD : artère pulmonaire droite
AA : Aorte ascendante
AD : Aorte descendante
VCS : veine cave supérieure

Figure N°34 : Tétralogie de Fallot chez un nourrisson de 8 mois ; le scanner en 3D met en évidence une sténose serrée de l’artère pulmonaire gauche (APG) (flèche) [53]
G- Imagerie par Résonnance Magnétique :

Selon Kastler [51]; IRM du fait de complémentarité par rapport à l’échocardiographie et son innocuité, occupe une place de choix dans la gamme des explorations cardiaques non invasives. L’IRM offre à la fois une représentation multi planaire tridimensionnelle de l’anomalie du système cardiovasculaire avec un champ de vu large (sans interférence osseuse ou aérique) et une excellente résolution spatiale, mais également une approche fonctionnelle sur les flux.

L’IRM permet ainsi d’accéder à des anomalies (notamment extracardiaque) qui échappent à l’échocardiographie mais aussi à l’angiographie.

L’IRM s’est donc, dès la phase initiale de son développement, progressivement imposée comme un examen indispensable dans le bilan des cardiopathies congénitales dont la tétralogie de Fallot.

Sa place gagnée en deuxième intention après l’écho-coeur dans l’évaluation des cardiopathies congénitales, dans les pays occidentaux, répond en premier lieu au souci légitime d’éviter, dans la mesure du possible, le recours chez l’enfant ou le jeune adulte à des techniques d’explorations invasives et/ou génératrice de rayonnements ionisants.

Selon Sigal-Cinqualbre [52], L’IRM permet une évaluation morphologique détaillée des différentes cavités cardiaques sans exposer le patient aux rayons X, mais outre ses contre-indications, sa résolution spatiale limite l’étude des structures de petite taille et la durée de l’examen nécessite chez l’enfant avant sept à huit ans, une sédation importante, parfois une anesthésie générale. L’indication idéale de L’IRM en matière de TF est le suivi morphologique et fonctionnel de la voie d’éjection pulmonaire et du ventricule droit après réparation chirurgicale. (Figure N°35)
Selon le même auteur, L’IRM apporte, des données fonctionnelles en complément des données morphologiques du cœur et des gros vaisseaux :

1. L’évaluation de la cinétique ventriculaire sur les acquisitions dynamiques en mode ciné avec, toutefois, une moindre résolution temporelle qu’en échographie. Les logiciels d’analyse semi-automatisés permettent de quantifier la fonction cardiaque et particulièrement le ventricule droit : volumes ventriculaires en télé diastole et en télé systole, masse myocardique, fraction d’éjection ;

2. L’imagerie en contraste de phase, apporte une cartographie dynamique des flux et leur quantification : évaluation des shunts, des sténoses et régurgitations valvulaires, rapport de débits, estimation des gradients de pression, évaluation des shunts, sténoses et régurgitations, détection des voies de dérivation ;

3. L’angio-IRM 3D avec injection de gadolinium permet une étude des gros vaisseaux. Le cas échéant, l’absence d’irradiation autorise la répétition de l’acquisition à différents temps circulatoires comme dans certains montages complexes si un premier passage se révèle insuffisant.

4. Sur les séquences tardives (dix minutes après l’injection de gadolinium), on peut visualiser une prise de contraste et apprécier l’extension de la fibrose ventriculaire qui peut émailler l’évolution de la cardiopathie.

En ce qui concerne notre contexte, le coût encore très élevé de l’imagerie par résonance magnétique, ainsi que sa non disponibilité dans nos structures médicales, rendent quasi impossible sa réalisation du moins à grande échelle. En effet, aucun patient de notre série n’a bénéficié de cet examen complémentaire.
Figure N°35 : Patient de 10 ans avec une tétralogie de Fallot opérée : présence d'une sténose de l'origine de l'artère pulmonaire gauche (flèches). [100]
V - Formes cliniques :

A- Fallot rose :

Ce terme familier désigne une forme dans laquelle la sténose pulmonaire n'est pas très sévère ; il y a alors un shunt bidirectionnel à travers la communication interventriculaire et la cyanose n'est pas ou peu apparente.

Cette entité ne correspond donc pas à la définition physiopathologique. Néanmoins, le terme « tétralogie de Fallot » peut être retenu si le défaut anatomique fondamental, c'est-à-dire le déplacement du septum infundubulaire, est documenté. [6]

B- Tétralogie avec agénésie de la valve pulmonaire :

Certains désignent par ce terme une malformation comportant une communication interventriculaire et un orifice pulmonaire hypoplasique, mais non gardé par une valve. Une dilatation massive du tronc de l'artère pulmonaire accompagne cette anomalie qui n'est pas une tétralogie de Fallot, car il n'y a pas véritablement de sténose sous-pulmonaire par déplacement du septum infundubulaire. Cliniquement, elle se caractérise par une faible cyanose, la sténose annulaire pulmonaire n'étant pas très serrée, mais par une régurgitation pulmonaire importante. Cette malformation se complique souvent d'une compression des bronches par les artères pulmonaires très dilatées. [6]

C- Tétralogie avec absence de septum infundubulaire :

Cette forme se retrouve dans environ 3 % des cas. Les valves pulmonaire et aortique se trouvent côte à côte, en « canon de fusil », ce qui peut poser un problème chirurgical au moment de la fixation de la pièce de Dacron fermant la communication interventriculaire. [6]
D- **Atrésie pulmonaire à septum ouvert (avec communication interventriculaire)** :

Il s'agit le plus souvent d'une forme extrême de la tétralogie de Fallot. L'atrésie peut être « acquise » lorsque la sténose infundibulaire progresse jusqu'à l’oblitération.

Cependant, l'atrésie pulmonaire est bien plus souvent présente à la naissance et se situe au niveau valvulaire et éventuellement tronculaire. L'infundibulum est presque toujours présent, mais se termine en cul-de-sac. L'aorte chevauche le septum interventriculaire. La valve pulmonaire peut être présente mais elle est alors imperforée. L’étendue de l’atrésie varie de cas en cas, pouvant toucher l'artère pulmonaire principale et ses branches. De nombreuses variantes sont donc observées : atrésie du tronc pulmonaire, mais confluence des artères pulmonaires droite et gauche, présence d'artères pulmonaires droite et gauche non confluentes, absence de l'une ou de l'autre des artères pulmonaires, rarement des deux.

Dans l'atrésie pulmonaire, la perfusion des poumons est assurée depuis l'aorte. C'est d'abord le canal artériel, encore perméable, qui permet la perfusion pulmonaire après la naissance. S'il n'existe pas d'autre source, la fermeture du canal entraîne le décès par hypoxie. Une perméabilité persistante du canal peut assurer une survie plus longue. Dans une majorité des cas, d'autres sources de perfusion pulmonaire permettent la survie, à savoir les collatérales aortopulmonaires. Il s'agit pour l'essentiel d'artères segmentaires fœtales qui n'ont pas involué ; elles prennent naissance de l'aorte thoracique, et parfois des artères sous-clavières, pour aller rejoindre les artères pulmonaires à des niveaux variables : artère pulmonaire droite ou gauche, branches lobaires ou segmentaires. Les artères pulmonaires ne sont cependant pas soumises à des pressions systémiques car, le plus souvent, il existe des sténoses sur le parcours des collatérales ou au niveau des anastomoses avec les branches pulmonaires. Les artères bronchiques peuvent également participer à l’irrigation pulmonaire. Les artères
pulmonaires médiastinales, certes hypoplasiques, existent dans la majorité des cas : artères pulmonaires droite et gauche confluentes ou non, avec ou sans tronc pulmonaire rudimentaire, mais toutes les artères lobaires ou segmentaires n'y sont pas nécessairement rattachées ; certaines en sont séparées et reçoivent une alimentation par une collatérale individuelle.

Cliniquement, la présentation varie donc en fonction du débit pulmonaire assuré par les collatérales ou le canal. À un extrême de l'éventail, on trouve le nouveau-né évoluant vers l'hypoxie sévère et la mort dès la fermeture du canal artériel. À l'autre extrême, on observe une circulation pulmonaire si généreusement irriguée par de grosses collatérales qu'il existe à peine une cyanose. De façon caractéristique, l'auscultation de ces cas révèle un souffle continu, systolodiastolique, audible sur différentes parties du thorax.

Lors de l'investigation de ces cas, qui comporte généralement un angioscanner (Figure N°36) et un cathétérisme cardiaque, il est nécessaire non seulement de documenter le niveau et l'étendue de l'atrésie pulmonaire, mais surtout de mettre en évidence les sources d'irrigation pulmonaire, la taille des artères pulmonaires, leur confluence ou non-confluence. Le meilleur moyen d'y parvenir est d'injecter sélectivement le produit de contraste dans toutes les collatérales (ou le canal). Cette véritable cartographie de la perfusion pulmonaire est indispensable avant toute tentative chirurgicale. [6]
Figure N°36: coupe scannographique dans le plan sagittal montrant une atrésie pulmonaire à septum ouvert avec persistance du canal artériel (flèche) [103]

AA : crosse de l'aorte RPA : artère pulmonaire droite
AAO : l'aorte ascendante, LV : ventricule gauche
LA : oreillette gauche MPA : tronc de l'artère pulmonaire
LPA : artère pulmonaire gauche PV : veines pulmonaire,
RV: le ventricule droit
VI- L’évolution spontanée :

En l’absence de correction chirurgicale, l’évolution spontanée de la tétralogie de Fallot reste très sévère et bien peu de patients vont atteindre l’âge de 10 ou 20 ans, l’apparition de malaise anoxique grave leur étant fatale dans la majorité des cas. En effet, l’étude de BERTRANOU et al [55] rapporte que : 15% des patients décèdent dans la première année de vie, 50% dans les trois ans et 75% dans les dix ans. En fait, moins de 5% des patients survivent au-delà de la cinquième décade ; c’est le cas, rapporté dans de l’étude de Abrouss (Alger) [56], qui est suivi pour tétralogie de Fallot non opéré alors qu’il est âgé de 56 ans, la survie dans ce cas a été expliquée par la présence de plusieurs collatérales aorto-pulmonaire ce qui rend la TF tolérable.

Dans notre série, le patient non opéré le plus âgé avait 15 ans dont la cardiopathie était bien tolérée vu la présence des collatérales.

L’évolution spontanée a été fatale pour 2 malades dans notre série soit 3,6% des cas. Les 2 malades sont décédés à domicile suite à un malaise anoxique grave, le premier à l’âge de 1 an ; le deuxième à J15 de vie.
VII- Complications :

Le premier est particulièrement fréquent dans les deux premières années de vie si la cyanose est très sévère. Il s'agit d'infarcissements cérébraux par hypoxie ou par embolie. La polyglobulie joue un rôle, surtout lorsqu'elle s'accompagne d’hypochromie. Un accident cérébrovasculaire peut se produire lors d'une crise hypoxique grave.

L'abcès cérébral survient plus tardivement, au-delà de l'âge de 2 ans. Cette complication est appelée à devenir rare, puisque la tétralogie est généralement opérée avant cet âge. Là encore, la polyglobulie et l'hypoxie sont des facteurs de risque. Le point de départ est souvent un petit foyer de ramollissement. Toute fièvre avec céphalées, même en l’absence de signes neurologiques, doit faire rechercher un abcès cérébral. Comme pour l'accident cérébrovasculaire, l'absence de « filtre » pulmonaire (le sang veineux pouvant accéder directement à l'aorte) est sans doute un facteur favorisant. En effet, un petit caillot ou une colonie de bactéries dans la circulation veineuse peuvent accéder directement au cerveau. L'aspiration à l'aiguille de l'abcès associée à un traitement antibiotique permet en général de le guérir.

L'endocardite d'Osler est peu fréquente dans les deux premières années de vie. Elle se rencontre souvent chez les adolescents et les adultes. Cette complication est maintenant rare. En effet, les interventions se font précocement et le risque devient très faible après correction chirurgicale.

Dans notre série, en dehors des malaises anoxiques, un malade a présenté une ischémie cérébrale par hypoxie sévère à l’âge de 3 ans; soit 1,8% des cas ce qui est proche des chiffres retrouvés dans les séries maghrébines qui ont rapporté la
présence des accidents neurologiques et l’endocardite bactérienne (tableau N°16), nous signalons que ce type de complications est devenu quasiment inexistant dans les séries occidentales qui adoptent de plus en plus une attitude chirurgicale très précoce.

Tableau N°16 : Fréquence des complications neurologiques et des endocardites bactériennes dans les séries maghrébines

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Nombre de cas</th>
<th>% de complications neurologiques</th>
<th>% d'endocardites bactériennes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEN KHALAFALAH [35]</td>
<td>22</td>
<td>9%</td>
<td>0%</td>
</tr>
<tr>
<td>BASIR [57]</td>
<td>98</td>
<td>7,1%</td>
<td>6,1%</td>
</tr>
<tr>
<td>AKOUDAD [58]</td>
<td>39</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>115</td>
<td>1,8%</td>
<td>3,5%</td>
</tr>
<tr>
<td>Notre série</td>
<td>55</td>
<td>1,8%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Une autre complication à signaler qui est l’hyper uricémie qui résulte d’une surproduction d’acide urique lié à la polyglobulie, mais surtout d’une diminution de son élimination par le rein souffrant d’une hypo perfusion. Elle ne doit être traitée que si elle est symptomatique, par l’allopurinol et la colchicine. Notre étude n’a objectivé aucun cas d’hyper uricémie.
VII- TRAITEMENT :

Le traitement définitif est la réparation chirurgicale à cœur ouvert, qui est indiquée dans tous les cas. L'âge auquel elle est effectuée de façon élective a diminué au fil des ans : actuellement, l'âge idéal pour une opération élective se situe entre 3 et 11 mois de vie. Certains l'effectuent même chez le nouveau-né.

En cas de symptômes importants dès l'âge de 3 mois, on procède à la correction définitive plutôt qu'à l'intervention palliative, à moins que l'anatomie ne soit défavorable.

Le traitement médical et le traitement palliatif chirurgical, qui permettent de remettre à plus tard la réparation définitive, ont donc une importance marginale aujourd'hui, sauf dans les cas d'atresie pulmonaire ou d'hypoplasie des artères pulmonaires.

A- Traitement médical :

Le traitement se limite à la prise en charge des crises hypoxiques et au traitement martial en cas d'hypochromie.

Ainsi puisque le malaise anoxique ou malaise de Fallot est une urgence vitale, sa prise en charge doit débuter sur le lieu de survenue du malaise qui est le domicile donc Les parents doivent connaître le malaise de Fallot. Ainsi leur éducation thérapeutique doit permettre de :

F Connaître les facteurs déclenchant : pour les éviter: pleurs, douleurs, peur, effort - c'est-à-dire prise des repas pour un nourrisson, fièvre, déshydratation par gastro-entérite, ambiance surchauffée, traitements contre-indiqués (diurétiques, digoxine, inotropes positifs, atropine...).

F Reconnaitre un malaise de Fallot : il survient indépendamment du degré de cyanose initial, en général le matin, suite à un facteur déclenchant. L’enfant
devient très cyanosé. La première phase est hypertonique avec agitation et dure quelques secondes, puis l’enfant est pâle, gris, hypotonique, geignard, avec diminution de la vigilance, tachycardie, polypnée secondaire à l’acidose et diminution ou disparition du souffle cardiaque. Le malaise dure 15 à 30 minutes, il comporte un risque létal élevé.

Le geste à faire en urgence à domicile est de replier les genoux de l’enfant sur le thorax afin d’augmenter les résistances systémiques et de forcer le passage à travers l’orifice pulmonaire. Rapidement, l’enfant doit être conduit au centre hospitalier le plus proche.

Lorsque le malaise survient en milieu hospitalier :

Il faut libérer les voies aériennes supérieures, assurer la ventilation, si nécessaire avec une FiO2 à 100 % et replier les genoux sur le thorax.

À la phase hypertonique, sédater l’enfant, soit par du diazépam intra rectal soit par de la morphine IV ou intramusculaire (0,1 mg/kg) en l’absence de voie veineuse. Il faut traiter l’acidose par du bicarbonate IV et assurer un remplissage au sérum physiologique (bolus de 5 à 10 ml/kg) pour majorer le débit pulmonaire.

Rapidement, en l’absence de récupération, réaliser une injection progressive de Propanolol IV, 0,1 mg par 0,1 ml (5 mg dans 5 cc de G5) sous monitoring cardiaque jusqu’à diminution de la fréquence cardiaque (FC) à moins de 130 BPM/minute et réapparition du souffle cardiaque. En cas de persistance du malaise, les résistances systémiques peuvent être augmentées par l’administration d’un alpha stimulant (phényléphrine 0,5 à 10 μg/kg/min, noradrénaline IV continu 0,05 à 0,1 mg/kg/min) avec contre-indication formelle à la stimulation bêta-adrénergique.
En effet, les crises hypoxiques sont à considérer comme une indication à intervenir chirurgicalement sans tarder. [6]

L’efficacité du **Propanolol**, dans la prévention de la survenue des crises hypoxiques, a été démontrée par PUEL et JIMENEZ [59] , à travers une étude rétrospective qui a consisté en l’utilisation du Propanolol chez 29 patients âgés de 1 mois à 17 mois porteurs d’une TF non opérées ; 69% des malades ont pu être amenés à la correction chirurgicale complète sans malaises anoxiques fréquents ou graves, et donc sans subir d’anastomose palliative préalable avec sa morbidité. La même étude signale une augmentation de l’efficacité de ce bêtabloquant après l’âge de 9 mois, et remarque que le degré de la sténose de la voie pulmonaire n’influence pas le succès du traitement.

Ainsi dans notre série sur les 55 malades ; 87%ont bénéficié du traitement par le Propanolol ; ce pourcentage est proche de celui dans retrouvé les autres séries. (Tableau N°17)

Tableau N°17: comparaison du pourcentage des malades mis sous un bêtabloquant entre les différentes études

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>% des malades mis sous un bêtabloquant</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAAD [19]</td>
<td>CASABLANCA</td>
<td>44%</td>
</tr>
<tr>
<td>ALEXIOU [22]</td>
<td>ANGLETERRE</td>
<td>75%</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>74,5%</td>
</tr>
<tr>
<td>Notre étude</td>
<td>FES</td>
<td>87%</td>
</tr>
</tbody>
</table>
Selon ISLEN [5], en dehors du traitement bêtabloquant, l’administration du fer est justifiée en cas de polyglobulie avec hypochromie, surtout chez le nourrisson à la dose de 5 à 10 mg /Kg/jr en 2 à 3 prises ; ceci afin d’améliorer la qualité des globules rouges et pour satisfaire aux besoins accrus en fer secondaire à l’hyperproduction de l’hémoglobine. Ainsi il a été prescrit chez 10% de nos malades.

Selon le même auteur lorsque la polyglobulie atteint un certain seuil, généralement supérieur à 64% des saignées répétées sont utiles. Outre l’amélioration circulatoire due à la réduction de la viscosité sanguine, la technique des saignées répétées a l’avantage de normaliser les troubles de la fonction plaquettaire et donc prévient les thromboses vasculaires. La saignée a été pratiquée chez un seul malade dont l’hématocrite atteignait 56% ce qui a permis une nette amélioration de son statut clinique et biologique.

D’autre part, dans le cadre de la prévention des complications notamment infectieuses plusieurs auteurs insistent à indiquer la mise des malades sous traitement antibiotique devant toute situation ou tout geste potentiellement infectieux (soins dentaires comme exemple).

En outre, quelques auteurs insistent sur le rôle de l’aspirine, comme antiagrégant plaquettaire, dans la prévention des accidents thromboemboliques ; dans notre série elle a été prescrite chez 9% des malades. [8]
B- Chirurgie palliative :

Les indications de la chirurgie palliative se sont singulièrement rétrécies, la plupart des chirurgiens expérimentés préfèrent pratiquer une réparation d'emblée. Si certains pensent pouvoir offrir une chirurgie définitive même chez le nouveau-né, nombreuses équipes voient encore une indication à la palliation si un geste s'avère indispensable dans les 3 à 6 premiers mois de vie [60]. En cas d'atrésie pulmonaire ou d'hypoplasie des artères pulmonaires, l'intervention palliative a pour but non seulement de soulager une hypoxie grave, mais encore de développer et de faire croître les artères pulmonaires.

L'anastomose de Blalock-Taussig, classique ou modifiée, reste la principale opération palliative. Les anastomoses directes entre l'aorte ascendante et l'artère pulmonaire droite (Waterston) et celles établies entre l'aorte descendante et l'artère pulmonaire gauche (Potts) sont à abandonner car elles risquent de déformer l'arbre vasculaire pulmonaire, et deviennent vite une cause d'hypertension pulmonaire par excès de débit.

L'intervention de Blalock-Taussig réalise une anastomose termino-latérale entre une artère sous-clavière et l'artère pulmonaire homolatérale. C'est la plus ancienne des interventions entreprise dans la tétralogie de Fallot, mais elle est toujours utilisée par bien des chirurgiens. Cette anastomose prive le bras de son principal affluent artériel, mais ceci est bien toléré chez le nourrisson et le petit enfant. L'anastomose, souvent, ne grandit pas avec l'enfant. La durée de son efficacité se trouve ainsi limitée.

Bien des centres préfèrent, surtout chez le nouveau-né [61], une anastomose de Blalock modifiée par l'interposition d'un tube de Gore-Tex®. Ces anastomoses ont l'avantage de pouvoir être calibrées selon l'âge du patient et de laisser intact l'apport artériel au bras. [6](Figure N°37) (Figure N°38)
Figure N°37 : [62]

A- Intervention de type Blalock- taussig classique : anastomose termino-latérale entre une artère sous- clavière et l’artère pulmonaire homolatérale.

B- Intervention de type Blalock modifié : l’interposition d’un tube de **Gore-Tex®** entre l’artère sous- clavière et l’artère pulmonaire homolatérale.
Figure N°38 : Intervention de type Blalock-Taussig modifié entre l’artère pulmonaire gauche et l’artère sous Clavière gauche [63]
Dans notre série 5 malades, soit 21% des cas opérés, ont bénéficié d’une chirurgie palliative de type Blalock modifié avec un âge moyen de réalisation de 18 mois, ce qui proche de l’âge moyen d’intervention rapporté dans les séries maghrébines et nettement supérieur à celui rapporté dans les séries occidentales. (Tableau N°17)

Tableau N°17: Age au moment de l’intervention palliative dans les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>Nombre de cas</th>
<th>Age moyen</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAHANGIRI [64]</td>
<td>ANGLETERRE</td>
<td>140</td>
<td>1 mois et demi</td>
</tr>
<tr>
<td>UNGERLEIDER [65]</td>
<td>ETATS- UNIS</td>
<td>4</td>
<td>1 mois et demi</td>
</tr>
<tr>
<td>GAY [66]</td>
<td>FRANCE</td>
<td>14</td>
<td>3 mois</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>CASABLANCA</td>
<td>5</td>
<td>20 mois</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>23</td>
<td>30 mois</td>
</tr>
<tr>
<td>ABID [23]</td>
<td>TUNISIE</td>
<td>107</td>
<td>26 mois</td>
</tr>
<tr>
<td>Notre série</td>
<td>FES</td>
<td>5</td>
<td>18 mois</td>
</tr>
</tbody>
</table>

Chez tous nos malades ayant bénéficié du Blalock modifié dans notre série, l’indication était la mauvaise tolérance de la cardiopathie et l’impossibilité de réaliser une cure complète en urgence. Cependant, en dehors de cette indication qui est effectivement la plus fréquente dans la littérature, plusieurs auteurs signalent une indication du geste palliatif d’ordre anatomique à savoir une hypoplasie de l’arbre pulmonaire puisque cette anastomose permet de développer et d’augmenter le calibre du tronc et des branches l’artère pulmonaire. [67]

En pratique, les anastomoses Blalock-Taussig classique et surtout Blalock modifié sont actuellement les interventions palliatives les plus utilisées dans le monde.
Cependant, qu’elles soient indiquées pour mauvaise tolérance de la cardiopathie ou pour favoriser le développement d’un arbre pulmonaire hypoplasique, leur fréquence semble être en constante régression vu le développement de la chirurgie curative.

Dans notre contexte d’autres indications spéciales d’ordre social interviennent dans le choix de type de chirurgie vu que la plupart de nos malades sont issus de familles ayant un niveau socio-économique modeste ; et vu la non généralisation de la couverture sociale. Ce constat a été rapporté dans la série de Tunisiennes de ABID [23] et de l’étude de HAKKOU [18] à Rabat. Nous rapportons l’expérience du service de cardiologie pédiatrique B de CHU IBN SINA Rabat qui a établi un algorithme décisionnel devant une tétralogie de Fallot comprenant tous les éléments qui interviennent dans le choix du type d’intervention. [Figure N°39]
Figure N°39 : Algorithme décisionnel adopté par le service de cardiologie pédiatrique

CHU IBN SINA Rabat [18]
C- Chirurgie curative :

Selon Friedli [6] ; La réparation complète s'effectue sous circulation extracorporelle et hypothermie modérée. Elle s'effectue électivement dès l'âge de 3 mois, même plus tôt dans plusieurs centres. Si l'hypoxie est grave ou s'il y a des crises hypoxiques, une intervention devient indispensable chez le nouveau-né ou le jeune nourrisson ; il faudra alors peser les risques d'une réparation contre ceux d'une palliation. L'expérience de l'équipe chirurgicale n'est pas le seul critère : en effet, si les artères pulmonaires sont petites, s'il existe des sténoses pulmonaires périphériques, une opération palliative est souvent préférée. De même, certaines anomalies des artères coronaires doivent faire choisir la palliation plutôt qu'une réparation chez le nourrisson, dans la mesure où cette dernière nécessitera peut-être la mise en place d'un tube ou d'une homogreffe entre le ventricule droit et l'artère pulmonaire.

Le geste chirurgical lui-même comprend la fermeture de la communication interventriculaire et la levée de la sténose pulmonaire. L'abord classique est une ventriculotomie droite au niveau de l'infundibulum (Figure N°40+41). Certains chirurgiens préconisent un abord par l'oreillette droite et par l'artère pulmonaire, afin de ménager le ventricule droit [68]. Une pièce de Dacron® est suturée sur la communication interventriculaire ; en cas de chevauchement important de l'aorte, cette pièce doit bomber en direction du ventricule droit (Figure N°43+44). On prend soin de ne pas léser le faisceau de His qui chemine le long du bord inférieur de la communication. La sténose infundubulaire est réséquée et la valve pulmonaire inspectée : une commissurotomie est effectuée en cas de sténose valvulaire. Il faut alors jauger le calibre de l'anneau valvulaire et du tronc de l'artère pulmonaire par des tiges de Hegar. Si le diamètre mesuré est inférieur à cette valeur limite, il faut alors fendre l'anneau valvulaire pulmonaire, de même que le tronc pulmonaire pour l'élargir par une pièce de Dacron® doublée de péricarde (patch transannulaire) (Figue N°45).
Ce geste laisse un orifice pulmonaire partiellement gardé seulement, et l'insuffisance valvulaire pulmonaire est inévitable. Elle est préférable à la persistance d'un gradient important. De 20 % à 40 % des patients, selon les centres, reçoivent une pièce transannulaire. Certains chirurgiens préfèrent la mise en place d'un greffon valvé, évitant le patch transannulaire : ceci peut se justifier en cas d'artères pulmonaires périphériques de faible calibre ou présentant des sténoses. Un réopération pour remplacement du greffon est évidemment programmé. L'intervention se termine par la fermeture d'une éventuelle communication inter auriculaire.

La réparation d'une atrésie pulmonaire avec communication inter ventriculaire est bien plus complexe ; elle se fait souvent en deux ou trois temps. Le premier temps est un geste palliatif visant à augmenter le débit pulmonaire, ce qui sert non seulement à donner une meilleure oxygénation, mais doit permettre une croissance des artères pulmonaires, souvent hypoplasiques. Une anastomose de type Blalock peut être adéquate, mais bien des chirurgiens préfèrent rétablir une continuité entre l'infundibulum ventriculaire droit et l'artère pulmonaire, soit directement par une pièce de Dacron®, si l'infundibulum est contigu à l'artère pulmonaire principale, soit le plus souvent par un tube ou greffon de préférence valvé, reliant ces deux structures. Cette manière de procéder a pour résultat un flux antérograde plus physiologique et donne de meilleures chances à un développement harmonieux de l'arbre vasculaire pulmonaire. Elle facilite aussi l'accès aux artères pulmonaires pour le cathétériseur, soit en vue d'effectuer des mesures, soit pour dilater au ballon d'éventuelles sténoses pulmonaires périphériques. Bien souvent, lors d'atrésie pulmonaire, certains lobes pulmonaires sont irrigués par des collatérales aortopulmonaires, mais ne sont pas reliés aux artères pulmonaires centrales. Il faut alors tenter de les relier, par anastomose directe ou par un greffon, aux artères pulmonaires centrales, en supprimant leur origine aortique.
Figure N°44

Figure N°45:
Figure N°46 : Fin de la cure complète
Figure N°47 : élargissement infundubulaire par patch
(Photos prises au bloc opératoire de chirurgie pédiatrique)
La cure complète a été réalisée chez 19 malades dans notre série ; L’âge moyen de nos patients au moment de l’intervention est de 4 ans et 10 mois avec des extrêmes de 5 mois et 16 ans. Cet âge reste très avancé par rapport à celui annoncé dans les séries occidentales (Tableau N°18).

Tableau N°18 : Age au moment de la cure complète selon les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>Nombre de cas</th>
<th>Age moyen</th>
<th>Age extrême</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAUSHAL [25]</td>
<td>INDE</td>
<td>52</td>
<td>10 mois</td>
<td>2 mois à 1 an</td>
</tr>
<tr>
<td>PIGULA [61]</td>
<td>ETAT-UNIS</td>
<td>99</td>
<td>27 jours</td>
<td>2 jours à 3 mois</td>
</tr>
<tr>
<td>POZZI [71]</td>
<td>ANGLETERRE</td>
<td>132</td>
<td>15,5 mois</td>
<td>2,3 mois à 5 ans</td>
</tr>
<tr>
<td>FARSANI [101]</td>
<td>IRAN</td>
<td>256</td>
<td>7,19 ans</td>
<td>1,5 an à 17 ans</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>RABAT</td>
<td>66</td>
<td>6,7 ans</td>
<td>10 mois à 19 ans</td>
</tr>
<tr>
<td>Notre série</td>
<td>FES</td>
<td>19</td>
<td>4,9 ans</td>
<td>5 mois à 16 ans</td>
</tr>
</tbody>
</table>

En effet, avec le développement des techniques de circulation extracorporelle et de réanimation, mais aussi des techniques de chirurgie à cœur ouvert, les chirurgiens n’hésitent plus à opérer les nourrissons de moins de 6 mois voir même les nouveau-nés dont la cardiopathie est mal tolérée à condition toutefois que la forme anatomique se prête à une correction complète. Une étude consacrée à la détermination de l’âge idéal pour la réalisation d’une cure complète de TF a été réalisée par VAN ARSDELL, celui ci a conclu que les meilleurs résultats post opératoires sont obtenus lorsque l’intervention curative est réalisée entre 3 mois et 11 mois. [60]
Plusieurs auteurs insistent sur le poids au moment de l’intervention ; ainsi le poids moyen de nos malades au moment de l’intervention est de 17 kg ce qui nettement plus élevés que ceux rapportés dans les séries occidentales.

Tableau N°19: poids au moment de la cure complète selon les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>Poids moyen</th>
</tr>
</thead>
<tbody>
<tr>
<td>HENNEIN [72]</td>
<td>ETATS-UNIS</td>
<td>3,1 kg</td>
</tr>
<tr>
<td>DYAMENEHALLI [102]</td>
<td>CANADA</td>
<td>8,5 kg</td>
</tr>
<tr>
<td>KAUSHAL [25]</td>
<td>INDE</td>
<td>8,38 kg</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>16kg</td>
</tr>
<tr>
<td>Notre série</td>
<td>FES</td>
<td>17 kg</td>
</tr>
</tbody>
</table>

En ce qui concerne le choix entre intervention curative d’emblée et cure complète précédée d’un geste palliatif, on remarque que dans toutes les séries, la tendance est en faveur d’une réparation complète d’emblée (Tableau N°20). Ce qui était le cas dans notre série puisque sur les 19 malades opérés 3 cas ont bénéficié d’une cure complète après un Blalock modifié.

Selon GUIRGIS [21], cette tendance s’explique par le fait qu’une des principales indications de l’anastomose palliative peut être actuellement traitée par cure complète. En effet, le geste palliatif était souvent indiqué chez les nourrissons car l’intervention curative n’était pas envisageable à cet âge. Puisque actuellement il est démontré que la morbi-mortalité de la cure complète reste faible malgré l’intervention à un jeune âge, il vaut mieux la réaliser en première intention afin de prévenir les risques cumulatifs à deux opérations et éliminer les complications des procédés de shunt.
Tableau N°20: Répartition des cas en fonction du caractère primitif ou secondaire de la cure complète

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>% Réparation complète d’emblée</th>
<th>% Réparation complète après BLALOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>HENNEIN [72]</td>
<td>ETATS-UNIS</td>
<td>77%</td>
<td>23%</td>
</tr>
<tr>
<td>GUIRGIS [21]</td>
<td>FRANCE</td>
<td>88%</td>
<td>12%</td>
</tr>
<tr>
<td>POZZI [71]</td>
<td>ANGLETERRE</td>
<td>68,8%</td>
<td>31,82%</td>
</tr>
<tr>
<td>D’ANDREA [73]</td>
<td>ITALIE</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>63,3%</td>
<td>36,7%</td>
</tr>
<tr>
<td>Notre série</td>
<td>FES</td>
<td>84%</td>
<td>15,7%</td>
</tr>
</tbody>
</table>

Cette attitude chirurgicale de plus en plus précoce, est soutenue par plusieurs arguments :

- Elle supprime les effets secondaires de l’hypoxie sur les organes et sur le développement cognitif et psychomoteur du patient.
- Elle soulage la sténose infundubulaire et donc élimine l’hypertrophie ventriculaire droite secondaire et la fibrose, et maintient les propriétés systolique et diastolique du VD, en comparaison avec la réparation tardive ou en deux temps.
- Elle permet le développement normal de la vascularisation pulmonaire et donc procure des échanges gazeux normaux.

Ces arguments sont soutenus par l’avènement du diagnostic anténatal. [74] [78] [82]

Alors que ; KARL TOM [67] pense que la réalisation d’un « Blalock modifié » chez les malades dont l’âge ne dépasse pas 3 mois permet d’épargner à ces enfants les complications de l’anesthésie au cours de la cure complète notamment la
Circulation Extracorporelle (CEC) et arrêt circulatoire sous profonde hypothermie avec ces conséquences neurologiques graves. KARL TOM a établi un arbre décisionnel devant la découverte en néo-natale d’une tétralogie de Fallot. (Figure N°48)

En pratique, l’amélioration des techniques de circulation extracorporelle, de réanimation et de chirurgie cardiaque a complètement révolutionné la prise en charge de la TF. Actuellement l’indication chirurgicale dépend essentiellement de la sévérité des lésions cardiaques. Ainsi :

- Dans les formes régulières, une intervention curative est réalisée d’emblée dès que l’âge du malade est supérieur à 3 mois. L’anastomose palliative n’est indiquée qu’en cas de mauvaise tolérance de la cardiopathie avant cet âge.

- Dans les formes irrégulières, une correction en 2 temps est préférable. Ceci principalement pour améliorer le développement d’un arbre pulmonaire hypoplasique.
Figure N°48 : Algorithme décisionnel adopté par Karl Tom devant la découverte néonatale d’une tétralogie de Fallot [67]
D- Cathétérisme interventionnel :

La dilatation au ballonnet de la voie de chasse droite, en lieu et place d'un acte chirurgical palliatif, est effectuée dans plusieurs centres, avec un certain succès.

Le risque de crise hypoxémique lors de ce geste n'est pas négligeable, mais une amélioration des saturations artérielles est souvent notée par la suite. Plusieurs utilisateurs de cette méthode ont pu démontrer, dans le suivi de ces patients, un développement de la taille de l'anneau pulmonaire et des artères pulmonaires ; c'est là un bénéfice additionnel, en vue de la correction définitive. [75] [77]

Le cathétérisme interventionnel a certainement sa place dans le traitement des sténoses pulmonaires périphériques et dans l'oblitération de collatérales systémiques ; ces deux anomalies se rencontrent plus fréquemment dans l'atrésie pulmonaire avec communication inter ventriculaire que dans la tétralogie de Fallot classique. Les sténoses d'artères pulmonaires sont dilatées au ballonnet, souvent la pose d'un stent est nécessaire. Les collatérales peuvent faire l'objet d'une oblitération par des spirales. [76]

Dans notre série aucun n'a bénéficié d'un cathétérisme interventionnel, ce qui est semblable dans la série de HAKKOU [18] et SAAD [19].
IX- L’évolution immédiate après chirurgie :

A- Après chirurgie palliative :

Dans notre série, 5 malades ont bénéficié d’une anastomose palliative. L’évolution immédiate en postopératoire était bonne avec disparition de la cyanose ; la diminution de nombre des malaises avec disparition de la dyspnée ; la saturation sanguine en oxygène est passée d’une moyenne de 78% avant le geste à une moyenne de 92% après.

En outre, les autres séries, où le nombre de malades ayant bénéficié d’un traitement palliatif est important, rapportent un taux de mortalité immédiate allant de 0% dans les séries occidentales à 20% dans les séries maghrébines, ce qui est le cas dans notre série puisque sur les 5 malades qui ont été palliés, un malade a décédé au cours de l’acte opératoire soit 20 % des cas (Tableau N°21)

Tableau N°21: Taux de mortalité précoce après anastomose palliative selon les séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>Nombre d’anastomoses palliatives</th>
<th>Taux de mortalité</th>
</tr>
</thead>
<tbody>
<tr>
<td>POZZI [71]</td>
<td>ETATS-UNIS</td>
<td>42</td>
<td>0%</td>
</tr>
<tr>
<td>FARSANI [101]</td>
<td>IRAN</td>
<td>90</td>
<td>0,4%</td>
</tr>
<tr>
<td>CASTAGNIE [79]</td>
<td>FRANCE</td>
<td>32</td>
<td>6,2%</td>
</tr>
<tr>
<td>HENNEIN [72]</td>
<td>ETATS-UNIS</td>
<td>7</td>
<td>14%</td>
</tr>
<tr>
<td>RANA [80]</td>
<td>PAKISTAN</td>
<td>63</td>
<td>14,2%</td>
</tr>
<tr>
<td>ABID [23]</td>
<td>TUNISIE</td>
<td>107</td>
<td>15,6</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>RABAT</td>
<td>46</td>
<td>4,3%</td>
</tr>
<tr>
<td>Notre étude</td>
<td>FES</td>
<td>5</td>
<td>20%</td>
</tr>
</tbody>
</table>
Une des principales complications qui peut émailler l’évolution immédiate après anastomose palliative est la thrombose précoce de celle-ci. L’anastomose n’étant plus perméable et donc non fonctionnelle nécessite une reprise chirurgicale ; cet incident a été rapporté dans 3,2% des cas dans la série de CASTAGNIE [79] et 7,5% dans la série de ABID [23] et il a été objectivé chez 1 patient dans notre série soit 20% des cas qui ont été palliés, ce pourcentage un peu élevé trouvé dans notre série s’explique par le nombre limité des patients ayant bénéficié d’un Blalock.

B- Après chirurgie curative :

Selon Friedli [6] Les résultats immédiats de la chirurgie de réparation d’une tétrologie de Fallot sont bons et la mortalité opératoire a beaucoup diminué, elle devrait être en dessous de 5 % à présent. Il existe un risque de bloc auriculo-ventriculaire (AV) complet par section du faisceau de His, celui-ci chemine en effet le long du bord inférieur de la CIV. De nos jours les chirurgiens savent bien éviter cette complication et le risque de bloc AV complet et permanent est à présent de l’ordre de 1 %. Tout bloc AV complet chirurgical doit faire l’objet de l’implantation d’un stimulateur cardiaque.

a) **Les complications postopératoires :**

Dans notre série, des complications post opératoires immédiates ont été signalées dans 5 cas soit 26,3% des patients qui ont bénéficié d’une intervention curative. Ce résultat est superposable à celui annoncé dans d’autres séries où une morbidité liée à la chirurgie curative est signalée en général dans 10 à 40% des cas. (Tableau N°21)
Tableau N°21: Fréquence des complications postopératoires dans les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Nombre de cures complètes</th>
<th>% des complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>KARL TOM [67]</td>
<td>18</td>
<td>11%</td>
</tr>
<tr>
<td>FARSANI [101]</td>
<td>256</td>
<td>12,9%</td>
</tr>
<tr>
<td>ALEXIOU [22]</td>
<td>89</td>
<td>14,6%</td>
</tr>
<tr>
<td>LEE [81]</td>
<td>160</td>
<td>16,9%</td>
</tr>
<tr>
<td>POZZI [71]</td>
<td>132</td>
<td>23%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>66</td>
<td>33%</td>
</tr>
<tr>
<td>PIGULA [61]</td>
<td>99</td>
<td>40%</td>
</tr>
<tr>
<td>Notre série</td>
<td>19</td>
<td>26,3%</td>
</tr>
</tbody>
</table>

Plusieurs auteurs insistent sur la portion des dysfonctionnements ventriculaires en postopératoire dans leur séries, ainsi un d’insuffisance cardiaque a été noté dans notre série soit 25% des cas qui ont présenté des complications, ce qui proche du pourcentage rapporté dans la série de PIGULA [61] 40% et celle retrouvée dans la série d’ALEXIOU [22] qui de 17%.

D’autres complications moins graves ont été signalées dans la littérature ; notamment les infections respiratoires et les épanchements des séreuses ; ce qui a été noté dans notre étude puisque 2 malades qui ont présenté un épanchement péricardique dont l’évolution était bonne dans les 2 cas.

b) **La mortalité précoce :**

Dans notre étude un seul cas, des 19 malades ayant bénéficié d’une cure complète, a décédé. Ce pourcentage de 5,2% est proche de celui retrouvé dans les différentes séries étrangères. (Tableau N°22)
Tableau N°22 : Taux de mortalité précoce après cure complète dans les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>Nombre de cures complètes</th>
<th>Taux de mortalité</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE [83]</td>
<td>CHINE</td>
<td>228</td>
<td>0,9%</td>
</tr>
<tr>
<td>FARSANI [101]</td>
<td>IRAN</td>
<td>256</td>
<td>0,7%</td>
</tr>
<tr>
<td>ALEXIOU [22]</td>
<td>ANGLETERRE</td>
<td>89</td>
<td>1,1%</td>
</tr>
<tr>
<td>FAIDUTTI [84]</td>
<td>SUISSE</td>
<td>501</td>
<td>1,4%</td>
</tr>
<tr>
<td>CASTAGNIE [79]</td>
<td>France</td>
<td>128</td>
<td>7,3%</td>
</tr>
<tr>
<td>KAUSHAL [25]</td>
<td>INDE</td>
<td>52</td>
<td>5,8%</td>
</tr>
<tr>
<td>GIANNOPOULOS [85]</td>
<td>GRECE</td>
<td>96</td>
<td>0%</td>
</tr>
<tr>
<td>HAKKOU [18]</td>
<td>Rabat</td>
<td>30</td>
<td>13,3</td>
</tr>
<tr>
<td>Notre série</td>
<td>FÈS</td>
<td>19</td>
<td>5,2%</td>
</tr>
</tbody>
</table>
X- L’évolution lointaine après chirurgie :

A- Après chirurgie palliative :

Dans notre série, les 4 patients, qui ont été palliés, ont gardé leur anastomose palliative pendant plus de 1 an. Leur comportement fonctionnel lors du suivi était satisfaisant. Le geste palliatif a été complété par une intervention curative chez 3 malades, le patient restant est en attente d’une cure complète de sa cardiopathie.

Les suites lointaines après anastomose palliative peuvent être marquées par des complications spécifiques. La plus classique étant la thrombose de l’anastomose. Elle a été signalée chez 6% des cas dans la série de CASTAGNIE (19), 9% des cas dans la série de ABID (1) et 14% des cas dans la série de RANA (79). Dans notre série un cas de thrombose de l’anastomose a été détecté qui est en attente d’une cure complète.

Notre série est trop petite pour être comparée à celles suscitées.

B- Après chirurgie curative :

a) Comportement fonctionnel :

Après un recul moyen de 3 ans et 3 mois, près de 88% des patients dont on a assuré un suivi post opératoire ont un comportement fonctionnel très satisfaisant et correspondent au stade I de la classification NYHA. Comme dans notre étude, le bon comportement fonctionnel en post opératoire est constant dans toutes les séries étrangères (tableau N°23). Cependant, une différence est notée en fonction de la durée du suivi post opératoire. En effet, nous avons remarqué une baisse de la fréquence des bons résultats dans les études où la durée moyenne du suivi au long court est supérieure à 7 ans. Nous pensons que cette baisse est due au fait qu’un long suivi post opératoire laisse le temps aux éventuelles lésions résiduelles d’avoir un retentissement clinique.
Tableau N°23: Fréquence des bons résultats postopératoires (patient stade I NYHA) dans différentes séries.

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Nombre de cas (opérés) suivis au long court</th>
<th>Recul moyen postopératoire</th>
<th>% des bons résultats (stade I NYHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASTAGNIE [79]</td>
<td>114</td>
<td>7 ans</td>
<td>76%</td>
</tr>
<tr>
<td>MURPHY [86]</td>
<td>138</td>
<td>29 ans</td>
<td>77%</td>
</tr>
<tr>
<td>WU [83]</td>
<td>228</td>
<td>5 ans</td>
<td>89%</td>
</tr>
<tr>
<td>POZZI [71]</td>
<td>132</td>
<td>3 ans</td>
<td>96,9%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>57</td>
<td>7 ans et 10 mois</td>
<td>82,4%</td>
</tr>
<tr>
<td>Notre série</td>
<td>18</td>
<td>3 ans et 3 mois</td>
<td>88%</td>
</tr>
</tbody>
</table>

b) Insuffisance pulmonaire résiduelle :

Dans notre cohorte, une insuffisance pulmonaire résiduelle (IP) a été mise en évidence chez 88% des malades ayant bénéficié d’une échocardiographie postopératoire. Elle est le plus souvent modérée.

Cette fréquence est proche de celles retrouvées dans un grand nombre d’études étrangères. En effet, COBANOBLU [27] signale une insuffisance pulmonaire postopératoire chez 91,5% des cas. Cette fréquence s’élève à 92,5% des cas dans la série de GIRARDOT [9].

c) La sténose pulmonaire résiduelle :

Dans notre série, une sténose pulmonaire résiduelle (SP) a été mise en évidence par échocardiographie chez 5 malades soit 27% des cas. Cette fréquence relativement élevée est confirmée dans la littérature.
Tableau N°24: comparaison du pourcentage des sténoses pulmonaires résiduelles entre les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Nombre de cas</th>
<th>% des sténoses pulmonaires résiduelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIRARDOT [9]</td>
<td>189</td>
<td>45,2%</td>
</tr>
<tr>
<td>FAIDUTTI [84]</td>
<td>218</td>
<td>49%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>54</td>
<td>65%</td>
</tr>
<tr>
<td>Notre série</td>
<td>18</td>
<td>27%</td>
</tr>
</tbody>
</table>

Dans notre cohorte, la plupart des sténoses pulmonaires résiduelles sont minimes ; un seul malade 20% des cas a présenté une SP jugée significative avec un Gmax supérieur à 30 mm de Hg, ce malade est candidat à une reprise. Cette fréquence est proche de celle annoncée dans les études étrangères. Ainsi GIRARDOT [9] annonce une fréquence de 15 % et FAIDITU [84] une fréquence de 10%.

Selon FRIEDLI [6], le gradient pulmonaire devrait idéalement se situer en dessous de 25 mm Hg, mais il est plus important dans environ 30 % des cas [87]. Un gradient se situant entre 25 et 50 mm Hg est tolérable, mais, au-delà de 50 mm Hg, il existe un risque important de mortalité et de morbidité tardives : intolérance à l'effort et troubles du rythme sont fréquents. Il est donc nécessaire de ré intervenir dans ce cas.

d) Communications interventriculaires résiduelles :

Dans notre série, la surveillance échographique couplée au Doppler couleur a permis la détection d’une CIV résiduelle minime chez 7 malades soit environ 36% des patients dont on a assuré un suivi postopératoire lointain. Nous signalons que cette proportion est comparable à celle annoncée dans la majorité des séries étrangères. En effet la plupart des auteurs annoncent une fréquence qui varie entre 6 et 16,2% (Tableau N°25).
Bien que ces CIV résiduelles soient restrictives et bien tolérées, elles laissent courir en permanence un risque de greffe oslérienne pouvant engendrer des dégâts considérables, et doivent donc être évitées dans l’avenir.

Tableau N°25 : Fréquence des CIV résiduelles dans les différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Lieu de l’étude</th>
<th>Nombre de cas opérés suivis au long court</th>
<th>% de CIV résiduelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIRARDOT [9]</td>
<td>FRANCE</td>
<td>189</td>
<td>13,9%</td>
</tr>
<tr>
<td>VIART [88]</td>
<td>BELGIQUE</td>
<td>184</td>
<td>6%</td>
</tr>
<tr>
<td>PRESBITERO [89]</td>
<td>ITALIE</td>
<td>39</td>
<td>8%</td>
</tr>
<tr>
<td>BENKHALFALLAH [35]</td>
<td>TUNISE</td>
<td>21</td>
<td>9,5%</td>
</tr>
<tr>
<td>CASTAGNIE [79]</td>
<td>FRANCE</td>
<td>114</td>
<td>16,2%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>CASABLANCA</td>
<td>57</td>
<td>20%</td>
</tr>
<tr>
<td>Notre étude</td>
<td>FES</td>
<td>18</td>
<td>36%</td>
</tr>
</tbody>
</table>

e) Les troubles de la conduction :

Dans la réparation chirurgicale de la TF, le risque de léser le système de conduction peut compromettre à long terme un pronostic pourtant rendu favorable par des fonctions hémodynamiques restaurées. Les troubles de conductions qui résultent de ces lésions sont de siège et d’importance variable, nous aborderons successivement les troubles à type de bloc de branche puis les blocs auriculo-ventriculaires complets. [6]

Dans notre série, un bloc de branche droit (BBD) a été constaté chez un malade soit 30% des cas opérés et qui ont bénéficié d’un ECG en postopératoire. Cette
fréquence relativement basse par rapport aux autres séries (73% dans la série de COBANOGLU [27] ; 90,7 dans celle de FARSANI [101]) peut être expliquée par le nombre limité des malades opérés ayant bénéficié d’un ECG systématiquement en post-op. (Seulement 3 malades ont bénéficié d’un ECG)

Selon FRIEDLI [6], le BBD postopératoire peut être dû à une interruption de la branche droite du faisceau de His lors de la fermeture de la CIV (BBD dit « proximal »), ou à la seule ventriculotomie (BBD dit « périphérique »). Une diminution de l’incidence des BBD postopératoires est donc théoriquement possible par des modifications de la technique chirurgicale. Il s’agit principalement d’une diminution de la taille de l’incision ventriculaire et d’un meilleur positionnement des fils de suture du patch utilisé pour la fermeture de la CIV.

Le bloc auriculo-ventriculaire complet est le trouble de conduction postopératoire le plus grave. Il peut être constaté immédiatement ou au contraire survenir plusieurs mois ou années après l’intervention chirurgicale.

Dans notre série, aucun cas de BAV n’a été objectivé.

f) Les troubles du rythme :

Parmi les patients dont on a assuré le suivi au long court et ayant bénéficié d’un ECG, aucun malade n’a présenté des troubles de rythme.

Il nous paraît très difficile de comparer cette incidence avec celles annoncées dans les séries étrangères. En effet dans la littérature, celle-ci varie énormément suivant le mode de recrutement, mais surtout en fonction des moyens de détection (Figure N°49) (ECG standard, Holter, épreuve d’effort et étude électrophysiologique).
Selon FRIEDLI [6], c’est avant tout l’enregistrement HOLTER de 24 heures qui permet de détecter les troubles du rythme cardiaque et cela dans une proportion de 40 à 50%. Le test d’effort les fait apparaître dans 20 à 30% des cas alors que l’ECG standard ne va les détecter que dans environ 10% des cas.

Les facteurs de risque de survenue d’un trouble du rythme cardiaque en post-opératoire (en particulier l’arythmie ventriculaire) ont été étudiés par plusieurs auteurs. Dans la majorité des séries, il semble qu’un âge avancé au moment de l’intervention curative ou une longue durée du suivi postopératoire augmente la fréquence des arythmies cardiaques.

Par ailleurs, GATZOLIS [38] insiste sur la responsabilité d’une dilatation importante du ventricule droit dans la genèse des troubles du rythme ventriculaire. Selon lui, l’altération des myocytes ventriculaires droits serait à l’origine de troubles de la dépolarisation- repolarisation de la cellule, vecteur d’arythmies. Cette relation est confirmée dans la série et de GIRARDOT [9].

Selon NAKAZAWA [92], la durée du QRS est un très bon marqueur du risque d’arythmies ventriculaires. GATZOLIS [91] ou encore BRILI [93] confirment cette
constatation etannoncent qu’une durée du QRS > 180 ms est en faveurd’un risque accru d’arythmies. Par conséquent, il existe un intérêt majeur dans la surveillance électrocardiographique, notamment dans la durée du QRS et son augmentation éventuelle.

g) La mortalité tardive :

Parmi les 18 patients suivis au long court, aucun décès postopératoire tardif n’a été noté. Nous signalons que comme dans notre étude, le taux de mortalité tardive est très faible dans toutes les séries étrangères dépassant rarement 6% des cas (Tableau N°26).

Tableau N°26 : Taux de mortalité tardive dans différentes séries

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Nombre de cas suivis au long court</th>
<th>Durée moyenne du suivi post-op</th>
<th>Taux de mortalité tardive</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEE [81]</td>
<td>156</td>
<td>5 ans et demi</td>
<td>0%</td>
</tr>
<tr>
<td>WU [83]</td>
<td>228</td>
<td>5 ans</td>
<td>1,8%</td>
</tr>
<tr>
<td>FAIDUTTI [84]</td>
<td>368</td>
<td>9 ans et demi</td>
<td>3%</td>
</tr>
<tr>
<td>SAAD [19]</td>
<td>57</td>
<td>7 ans et 8 mois</td>
<td>0%</td>
</tr>
<tr>
<td>MURPHY [86]</td>
<td>162</td>
<td>32 ans</td>
<td>6%</td>
</tr>
<tr>
<td>Notre étude</td>
<td>12</td>
<td>3 ans et 8 mois</td>
<td>0%</td>
</tr>
</tbody>
</table>

Tous les auteurs signalent à l’unanimité que la principale cause de décès postopératoire tardif est la mort subite. Plusieurs études ont été menées afin de déterminer les facteurs de risque qui lui sont associés. Ainsi, l’IP sévère, la dilatation postopératoire du VD, les arythmies ventriculaires postopératoires et l’allongement du QRS (> 180 ms) sont les facteurs les plus incriminés [3] [94]. A une moindre fréquence d’autres facteurs de risque sont mentionnés dans la littérature ainsi :
GATZOLIS [91] remarque une plus grande incidence des morts subites chez les patients qui ont été opérés à un âge tardif.

Dans une série de 658 cas, NOLLERT [40] note que le sexe masculin, la mauvaise tolérance de la cardiopathie en préopératoire et l’absence de geste palliatif avant la cure complète augmentent le risque de mort subite.

STEEDS et OAKLEY [95] signalent une plus grande incidence des morts subites chez les patients qui ont une SP sévère (GMax > 40 mm Hg).

KARL TOM [67] remarque que les patients qui ont bénéficié d’une cure complète d’emblé avant l’âge de 3 mois ont plus tendance à faire des morts subites que ceux qui ont d’un Blalock modifié suivi d’une cure complète.

C- Modalité de surveillance des malades opérés d’une TF chez l’adulte :

La société européenne de cardiologie (ESC) suggère la réalisation d’un suivi régulier dans un centre spécialisé en cardiologie congénitale adulte ; de préférence annuel. [96]

Le suivi systématique des patients opérés d’une TF peut être proposé comme suite :

v Un premier bilan complet de départ à l’âge adulte, comprenant la réalisation d’:

 B Echocardiographie cardiaque
 B ECG
 B IRM cardiaque
 B Epreuve d’effort avec mesure de la consommation en oxygène
 B Holter ;

v Une surveillance plus ou moins espacée selon les résultats de base ou l’apparition de symptômes.
Notre travail a consisté en une étude rétrospective de 55 cas de tétralogie de Fallot colligés sur une période de 4 ans dans le service de cardiologie pédiatrique, au CHU Hassan II Fès.

Au terme de notre étude, nous confirmons que la TF reste à ce jour une des cardiopathies congénitales les plus fréquentes et qu’elle atteint préférentiellement les sujets de sexe masculin.

Parmi les facteurs de risque environnementaux et génétiques qui lui sont associés, la consanguinité et les aberrations chromosomiques sont les plus fréquentes dans notre contexte.

Un grand contraste existe entre les pays occidentaux et notre pays voir tous les pays en voie de développement. Celui-ci concerne l’âge de découverte de la TF. En effet, alors qu’en occident le dépistage de cette cardiopathie se fait systématiquement en période néonatale et ce par simple auscultation cardiaque de tout nouveau-né. L’âge moyen de découverte reste très élevé dans notre contexte (2 ans et demi) laissant le temps à la survenue des complications dont les plus fréquentes sont d’ordre neurologiques et infectieuses.

Le bilan biologique, l’électrocardiogramme et la radiographie du thorax sont actuellement des examens de routine réalisés par toutes les équipes afin d’orienter le diagnostic et évaluer la tolérance de la cardiopathie, ce qui le cas dans notre étude puisque tous nos malades ont bénéficié d’une radio thorax et un grand nombre ont bénéficié d’un ECG et d’un bilan biologique.

L’échocardiographie est à ce jour l’examen de référence pour faire le diagnostic positif de la TF et mettre en évidence la majorité des lésions qui peuvent s’y associer. Pour preuve, elle a permis de confirmer le diagnostic de TF chez la totalité de nos patients.
Quant à l’angiographie réalisée essentiellement en période préopératoire, elle garde une importance certaine en cas de doute sur l’état de la portion distale de l’arbre pulmonaire ou sur la présence d’anomalies coronaires associées à la TF, mais la tendance actuelle va vers l’abandonment de cet examen vu son caractère invasif et l’avènement de nouvelles méthodes d’exploration non invasives, dans notre série aucun patient n’a bénéficié l’angiographie.

Parmi les examens non invasifs, nous signalons l’avènement de l’angioscanner et de l’imagerie par résonance magnétique qui en plus du diagnostic positif de la TF permet de dresser un bilan lésionnel complet. Cependant, son coût élevé ainsi que sa non-disponibilité dans nos infrastructures sanitaires justifient le nombre limité des cas ayant bénéficié de ces 2 explorations. (7 malades ont bénéficié d’un angioscanner et aucune IRM n’a été faite).

La TF est actuellement une cardiopathie congénitale « curable ». Si dans la majorité des pays occidentaux l’intervention curative est indiquée dès l’âge de 3 mois. L’âge moyen au moment de la chirurgie, si elle est réalisée, reste relativement élevé dans notre contexte (4 ans et 10 mois) et ce au même titre que tous les pays en voie de développement. En dehors du dépistage tardif, la principale cause du retard de la chirurgie curative dans notre pays reste le manque de moyens financiers et l’absence de couverture sociale généralisée. En effet, seuls 38% de nos patients ont été opérés et dans la majorité des cas, ce sont des associations de bienfaisance qui les avaient pris en charge puisque la proportion de patients mutualistes dans notre série ne dépasse pas les 11%.

Après un recul moyen de 3 ans et 3 mois, des résultats fonctionnels satisfaisants ont été notés chez plus de 88% de nos patients opérés. Cependant malgré ces bons résultats, la surveillance cardiologique reste fondamentale. En effet, la correction des lésions cardiaques ne pouvant être parfaite, le patient peut être sujet à des lésions
résiduelles. Les plus fréquentes sont les sténoses pulmonaires résiduelles (27% de nos malades) et l’insuffisance pulmonaire (88% de nos patients).

Finalement, nous retenons que le développement des techniques de réanimation et de chirurgie cardiaque a complètement changé le pronostic de la TF. L’évolution postopératoire est actuellement excellente pourvu que l’intervention se fasse à un jeune âge. Ces résultats doivent nous motiver à faire plus d’effort afin d’améliorer la prise en charge des patients porteurs de cette maladie dans notre pays. A notre sens, une amélioration de la situation actuelle nécessiterait principalement :

 - L’éducation de la population sur l’importance du suivi médical de la grossesse ainsi que sur les risques de l’accouchement à domicile.
 - La généralisation de la couverture sociale incluant les personnes économiquement démunies.
 - La sensibilisation du personnel médical et paramédical (que ce soit en milieu hospitalier, au niveau des centres santé ou en médecine scolaire) en ce qui concerne le dépistage de la TF et des cardiopathies congénitales en général.
 - Une amélioration des structures sanitaires en particulier les services de maternité, de pédiatrie, de cardiologie et de chirurgie cardiovasculaire.

Nous espérons que ces mesures nous permettent de mieux pouvoir prendre en charge les cardiopathies congénitales et permettre à nos enfants d’avoir une meilleure vie.
RESUME
En analysant les dossiers médicaux de 55 enfants, présentant la Tétralogie de Fallot suivis au service de cardiologie pédiatrique au CHU de Fès sur une période de quatre ans entre janvier 2008 et décembre 2011, on a essayé d’approcher le profil épidémiologique, clinique, paraclinique, thérapeutique et évolutif de cette maladie.

Ainsi dans notre série la tétrologie de Fallot est la plus fréquente des cardiopathies congénitales suivies en consultation. L’âge moyen de découverte est de 2 ans et 7 mois. Il existe une prédominance masculine parmi nos malades (Sexe ratio 1,61) et les facteurs étiologiques les plus souvent signalés sont la consanguinité (31%) et les aberrations chromosomiques (25%).

Les signes cliniques sont dominés par la cyanose (95% des cas) et nous signalons que 43% de nos patients présentaient déjà des crises anoxiques au moment du diagnostic de leur cardiopathie.

Le diagnostic de tétrologie de Fallot a été confirmé par échocardiographie dans tous les cas et le bilan lésionnel a été complété par un angioscanner chez 7 malades.

Des malformations cardiovasculaires associées à la TF ont été mises en évidence dans 53% des cas. Les plus fréquentes étant les communications inter-auriculaires (20%), la persistance du canal artériel (14,6%).

L’évolution spontanée de nos malades a été marquée par le décès de 2 malades, et la survenue de complication neurologique dans 1 cas.

Dans notre série, 21 malades ont été opérés (38%) : 16 malades ont bénéficié d’une cure complète d’emblé et 3 malades ayant bénéficié d’une cure curative précédée d’un geste palliatif type « Blalock modifié », 1 malade a été pallié et qui est en attente d’une cure complète.

L’évolution immédiate après chirurgie curative est satisfaisante, un seul malade a présenté une insuffisance cardiaque globale, et 2 malades ont présenté un
épanchement péricardique, dont l’évolution a été bonne. À noter 2 cas de décès per-opératoire.

Les suites lointaines après intervention curative ont été appréciées après un recul moyen de 3 ans et 3 mois chez nos malades. Au point de vue fonctionnel, des résultats jugés satisfaisants ont été notés chez plus de 88% des patients.

L’échocardiographie postopératoire a mis en évidence une sténose pulmonaire résiduelle chez 27% des cas, une CIV résiduelle minime chez 30% des cas, une insuffisance pulmonaire résiduelle 88%.

Pour conclure, nous avons insisté sur l’importance de la promotion du dépistage précoce dans notre pays ainsi que la nécessité de créer un système de sécurité sociale pour prendre en charge les frais d’un traitement chirurgical coûteux, mais curatif et ce dès un très jeune âge.
SUMMARY

By analyzing the medical records of 55 children, with the Tetralogy of Fallot followed in the pediatric cardiology department at the University Hospital of Fez on a four-year period between January 2008 and December 2011, we try to approach the epidemiological, clinical, paraclinical, therapeutic and evolutive disease.

In our series tetralogy of Fallot is the most common congenital heart disease followed at consultation. The mean age of discovery is 2 years and 7 months. There is a male predominance among our patients (sex ratio 1.61) and the most frequent etiologic factors are the consanguinity (31%) and the chromosomal aberrations (25%).

The main sign is cyanosis (95% of cases) we note, 43% of our patients had already anoxic seizures at diagnosis of their heart.

The diagnosis is confirmed by echocardiography in all the cases and the lesional examination has been completed by an angioscan in 7 patients.

The associated lesion is identified in 53% of cases. The most frequent are the atrial septal (20%), patent ductus arteriosus (14.6%).

The spontaneous evolution of our patients was marked by deaths of two patients, and neurological complications in a case.

The surgery is performed in 16 cases, 3 patients who underwent "modified Blalock shunt", 2 patients are waiting for a complete cure, after Blalock operation.

The immediate evolution after curative surgery is satisfactory, one patient developed congestive heart failure, and 2 patients developed pericardial effusion, whose evolution has been good. Noted 2 cases of death during surgery.

The remote continuations after curative intervention were appreciated after a median follow-up of 3 years and 3 months of our patients. In functional terms, satisfactory results were noted in over 88% of patients.
Postoperative echocardiography showed a residual pulmonary stenosis in 27% of cases, a small residual VSD in 30% of cases, and residual pulmonary insufficiency in 88% of cases.

Finally, we insisted on the role of the improvement of the precocious screening in our country as well as the necessity to create a system of social security in order to pay the costs of expensive surgical treatment.
ملخص

من خلال تحليل السجلات الطبية لـ55 طفلًا، حُمِل 56% لمرض عدائية فالو، الذين تم تتبعهم في مصلحة أمراض القلب لدى الأطفال بالمركز الإستشفائي الجامعي بغاش و على مدى أربع سنوات ما بين يناير 2008 وديجنبر 2011، حاولنا أن نقترب من الحالة الوبائية، السريرية، الاختبارات، العلاجية والتطورية لهذا المرض.

وهكذا فإن عدائية فالو هي الأكثر شيوعًا من مجموعة اعتلالات القلب الولادية الخاضعة للمراقبة بالمصلحة. إن متوسط السن عند تشخيص المرض كان ستان و 7 أشهر، وكان غالبية جنس الذكور بين مرضىنا (نسبة الجنس 63.1%)، وك العوامل السببية الأكثر تردا تمتثلت في القرابة الدموية (31%) و الزيغ الصبيح (25%).

العلامات السريرية تعرف غالبية الزراق (95% من الحالات) وتشير إلى أن 43% من مرضىنا سبق أن تعرضوا لأزمات عوز الأكسجين خلال تشخيص اعتلال القلب لديهم.

إن تشخيص عدائية فالو تأكد بواسطة تخطيط صدى القلب في كل الحالات و من مجموع الفحوصات حول الأفق تم تكييمها بواسطة التصوير المقطعي للأوعية الدموية لدى 7 مرضى.

وقد تم تحديد شوائب القلب والأوعية الدموية المرتبطة بالمرض في 53% من الحالات. الأكثر شيوعًا هي الإتصالات بين الأذينين (20%) وثامن القناة الشريانية السالكة (14.6%).

التطور التشريحي لمرضنا تميز بوفاة تثنى من المرضى، وحدوث المضاعفات العصبية في حالة واحدة.

في سلسلتنا، 21 مريضا خضعوا للعملية الجراحية (38%)، 16 منهم استفادوا من عملية شافية في الأول و 3 مرضى استفادوا من العلاج الكامل سببته عملية متلفة، وقد اقتصرت العملية في 2 من الحالات على تفاغر ملعف "باللوك تمسي أو باللوك المصحح" وهم في انظار العلاج الكامل.

التطور الفوري بعد العملية الجراحية العلاجية تميز بتحدوث مضاعفات تمثلت في ظهور قصور القلب الاحتفاني عند مريض واحداً، وانصابات تأموري عند 2 من المرضى، الذي تطور نحو الشفاء، نسب حالتان من الوفاة أثناء العملية، المخلفات البعيدة بعد العملية الشافية تم تقييمها بعد متوسط تراجع بلغ 3 سنوات و 3 أشهر عن 19 مرضاً. من الناحية الوظيفية، فإن النتائج كانت مرضية في أكثر من 88% من الحالات. وأظهرت نتائج تخطيط صدى القلب بعد العملية الجراحية تضيق دومياً تمايلياً في 27% من الحالات، واتصالات صغيرة بين البطينين تمايلياً في 30% من الحالات، قصوراً دومياً تمايلياً 88%.

في الختام، أكدنا على أهمية تعزيز الكشف المبكر في بلادنا، والحاجة إلى إنشاء نظام الضمان الاجتماعي لدعم تكاليف العلاج الجراحي المكلف، ولكن شافيه وذلك في سن جد مبكرة.
BIBLIOGRAPHIE

[2] MANNUEL Mark
Morphogénèse du cœur et bases embryologiques des cardiopathies congénitales
Faculté de médecine de Strasbourg ; 2007

[3] ISELIN M.
Cardiopathies congénitales.

[4] HOUYEL L.
Embryologie cardiaque.

[5] ISELIN M.
Cardiopathies cyanogènes.

[6] FRIEDLI B.

[7] CHAUVAUD S.
Tétralogie de Fallot : généralités.

[8] DUPUIS C, KACHANER J, PAYOT M.
Cardiologie pédiatrique, 2ème édition FLAMMARION
Médecine- science 1991 : 327- 345

[9] GIRARDOT R.
Evolution à long terme après correction complète d’une tétralogie de Fallot Thèse de Médecine, N°3081, 2002 Bordeaux (France).

[10] BECKER A.E., ANDERSON R.H.
Is the aorta truly dextroposed in tetralogy of Fallot; A two-dimensional echocardiographic answer Circulation 1986; 73: 892- 899

Associated coronary and cardiac anomalies in the tetralogy of Fallot.

Tetralogy of Fallot: Surgical Perspective; American College of Cardiology ;2008

[14] STEPHENSEN SS, SIGFUSSON G, ERIKSSON H
Congenital cardiac malformations in Iceland from 1990 through 1999

Apport de l’échocardiographie dans le diagnostic des affections cardio-vasculaires ;
thèse de médecine, Bamako, Mali

[16] ABOU CHARAF L C., TIMANI N.
Cardiopathies Congénitales au Liban statistique, indications thérapeutiques et centralisation
Revue médicale libanaise, 1997, vol 9, N°3,3p

[17] IMAN E.
Etude épidémiologique des cardiopathies congénitales
Mémoire de fin de Spécialité 2010

[18] HAKKOU J.
Tétralogie de Fallot à Rabat
Thèse de médecine, 2007, Rabat
[19] SAAD A.
Tétralogie de Fallot à Casablanca (a propos de 140 cas)
These de medicine, N°56, 2005, Casablanca

Coronary echocardiography in tetralogy of Fallot: diagnostic accuracy, resource utilization and surgical implications over 13 years.

[21] GUIRGIS H., LOSAY J., SERRAF.
Cure complète de la tétralogie de Fallot chez le nourrisson de moins de 6 mois.

[22] ALEXIOU C., MAHMOUD H., AL-KHADDOUR A.
Outcome after repair of tetralogy of Fallot in the first year of life.

[23] ABID A., KHAYATI A., KALFAT T.
Anastomoses systémico- pulmonaires dans la tétralogie de Fallot.

[24] I.KHALEF, S. TILouce, J.BOUGUILA, R.KBAILI, N.SOYAH,
Tétralogie de Fallot à propos de 11 cas
Société tunisienne cardiologie ; experience du service de cardiologie
CHU Sahloul Sousse

Surgical experience with total correction of tetralogy of Fallot in infancy.

[26] SARUBBI B, PACILEO G., PISACANE C.
Exercise capacity in Young patients after total repair of tetralogy of Fallot
Pediatric Cardiology, 2000,21,211- 215
[27] COBANOGLU A., SCHULTZ J.M.

[28] GNANSIA E R., FRANCANET C., BOZIO A.

[29] LOFFREDO CA, SILBERGELD EK, ZHANG J.
Association of transposition of the great arteries in infants with maternal exposures to herbicides and rodenticide; Am Epidemiol 2001;153

[30] KÄLLEN K.
Maternal smoking and congenital heart defect Eur J Epidemiol 1999; 15; 251-254

[31] M. Becker, Zohair A, Corazon M, Richard M.

[32] MICHELON G., MARINO B., FORMIGARI R.
Genetic syndromes and outcome after surgical correction of tetralogy of Fallot. The annals of thoracic surgery, 2006, vol 81, N°3, 968-975

[33] BOUDJEMLINE Y., FERMONT L., LE BIDOIS J.

[34] PIECHAUD J.F., DELOGU A.B., ISERIN L.
[35] BEN KHALLFALLAH A., ANNABI N., OUSJI M.
Evolution à long terme de la tétralogie de Fallot opérée.

[36] BERNARD Y.
Echocardiographie normale et pathologique.

[37] CHAUVAUD S.
Tétralogie de Fallot : correction des formes irrégulières.

[38] CHAUVAUD S.
Tétralogie de Fallot: réparation complète de la forme régulière.

[39] MARINO B., DIGILIO M.C., GRAZIOLI S.
Associated cardiac anomalies in isolated and syndromic patients with tetralogy of Fallot. American Journal of Cardiology 1996; 77: 505- 508

[40] NOLLERT G., FISCHLEIN T., BOUTERWEK S.

[41] GODART F., REY C., MUILWIJK C.
La valvuloplastie pulmonaire percutanée chez les nouveaux- nés et nourrissons atteints de tétralogie de Fallot

[42] FREDERIQUE B., ROBERT H A.
Tetralogy of Fallot.
Orphanet Journal of Rare Diseases 2009, 4:2
[43] GUERIN P., BAUDET E., JIMENEZ N.
Intérêt comparé de l’échographie transthoracique et de l’angiographie pour la mesure de l’anneau de l’artère pulmonaire dans la tétralogie de Fallot.
Archives des Maladies du Cœur et des Vaisseaux 1995 ; 88 : 687-91

[44] DE GEETER B.
Cardiologie fœtale.

[45] GUPTA D., SAXENA A., KOTHARI S.S.
Detection of coronary artery anomalies in tetralogy of Fallot using a specific angiographic protocol.

[46] ISELIN M.
Diagnostic anténatal des cardiopathies congénitales.

[47] E. L. BOVE AND J. C. HIRSCH
Tetralogy of Fallot
Surgery for Congenital Heart Defects 2006 ; P 400-408

[48] SIDI D ., STOS B.
Cardiopathie congénitale à révélation neonatale : strategie d’approche
Encycl- Med- Chirur ;Radiodiagnostic cœur- poumon ;30-015-A-10

Prenatal Diagnosis of Tetralogy of Fallot with Pulmonary Atresia
from the National Science Council and V96C1-159 from Taipei Veterans General Hospital, Taiwan, R.O.C. 2314-B-075-014
[50] ATIK F.A., ATIK E., DA CUNHA C.R.
Long-term results of correction of tetralogy of Fallot in adulthood.

[51] KASTLER B., LIVOLSI A., GERMAIN P.
IRM des cardiopathie congénitales.

[52] SIGAL-CINQUALBRE, V. LAMBERT, A. RONHEAN, J.-F. PAUL
Place du scanner multicoupes (SMC) et de l’IRM dans la stratégie diagnostique des cardiopathies congénitales
Archives de pédiatrie Volume 18, numéro 5 pages 617-627 (mai 2011)

[53] PAUL JF. LAMBERT V.
Exploration tomodensitometrique des cardiopathies congénitales
Encycl Méd Chir ; 11-940-A-80

[54] SATO Y., MATSUMOTO N., KOMATSU S.
MDCT evaluation of right ventricle-pulmonary artery bypass stenosis in corrected tetralogy of Fallot.
International journal of Cardiology, Article in Press. 2006

[55] BERTRANOU G., EUGENE H. BLACKSTONE, JANE B. HAZELRIG,
Life Expectancy Without Surgery in Tetralogy of Fallot.
The American Journal of CARDIOLOGY Volume 42 September 1978

[56] Abouss D.
Total correction of tetralogy of Fallot in the first year of life: late results.
Ann Thorac Surg 2002; 76
[57] BASIR A.
Thèse de Médecine, N°223, 2000 Rabat

[58] AKOUDAD H., CHERTI M., LAHLOU I.
La tétralogie de Fallot : aspects cliniques et thérapeutiques.
Maroc Médical, tome 22 n°3, septembre 2000.

[59] PUEL V., JIMENEZ M., SORAIN F.
Prévention des malaises anoxiques de la tétralogie de Fallot par les bêta-bloquants.

[60] VAN ARSDELL G.S., MAHARAJ G.S., TOM J.
What is the optimal age for repair of tetralogy of Fallot.

[61] PIGULA F.A., KHALIL P.N., MAYER J.E.
Repair of tetralogy of Fallot in neonates and young infants.
Circulation. 1999 ; 100[suppl II]: II-157-II-161.

[63] S. Bert Litwin, MD

[64] JAHANGIRI M., LINCOLN C., SHINEBOURNE E.A.
Does the modified Blalock- Taussig shunt cause growth of the controlateral pulmonary artery.
Ann Thorac Surg 1999 ; 67:

[65] UNGERLEIDER R.M., KANTER R.J., O’LAIGHLIN M.
Effect of repair strategy on hospital cost for infants with tétralogie of fallot
Annals of surgery, 225, 6, 779-784, 1997
[67] KARL TOM R.
Tetralogy of Fallot: Current surgical perspective

Arch Mal Coeur 1980 ; 70 : 1185-1192

[69] ISABELLE V. A. . ISERIN L.
Surveillance d’une tétralogie de Fallot opérée
Press med 2011 ; 40 ; 740-747

[70] http://www.cardiologiedesenfants.be/bon-coeur-coeur-malade/traitement-cardiopathies/traitemen-
t cardiopathies.html

[71] POZZI M., TRIVEDI D.B., KITCHINER D.
Tetralogy of Fallot : what operation, at witch age.

[72] HENNEIN H. MOSCA R.S, URCELAY G.
Surgical experience xith total correction of tetralogy of Fallot in infancy

[73] D’ANDREA A.,CASO P ; SARUBBI B ;
Right ventricular myocardial dysfunction in adult patients late after repair of tetralogy of Fallot

[74] CASPI J. , ZALSTEIN E., ZUCKER N ;
Surgical management of tetralogy of Fallot in the first year of life
The annals of thoracic Surgery, 1999,Vol 68 ,1344-1348
[75] ROUault F.
Cathétérisme cardiaque, angiographies du petit enfant et l’enfant
Encycl Méd Chir , 2003, 11- 940- A- 95

[76] REY C.
Cathétérisme interventionnel chez le nouveau-né et l’enfant

[77] WORMS A.M , MARçon F.
Cathétérisme interventionnel chez le nourrisson et le nouveau né.

[78] VAN DONGEN E.I., GLANSDORP A.G., MILDNER R.J.
The Influence of perioperative factors on outcomes in children aged less than 18 months after repair of tetralogy of Fallot
Journal of Thoracic and Cardiovascular Surgery, 2003, vol126, issue 3, 703- 710

[79] CASTAGNIE J.P.
Tétralogie de Fallot : étude rétrospective de 96 corrections primaires et de 32 corrections secondaires après anastomose de BLALOCK- TAUSSIG.
Thèse de Médecine, n°63, 1995 Bordeaux (France).

[80] RANA J.S., AHMAD K.A., SHAMIN A.S.
Blalock- Taussig shunt : experience for the developing world.
Heart, Lung and Circulation 2002 ; 11 : 152- 156

[81] LEE J.R., KIM J.S., LIM H.G.
Complete repair of tetralogy of Fallot in infancy.
[82] KOLCZ J., PIZZARRO C;
Neonatal repair of tetralogy of Fallot result in improved pulmonary artery development. Without increased need for reintervention

[83] WU Q.
Indication and technique of total correction of tetralogy of Fallot in 228 patients.

[84] FAIDUTTI B., CHRISTENSON J.T., BEGHETTI M.
How to diminish reoperation rates after initial repair of tetralogy of Fallot.

[85] GIANNOPOULOS NM., CHATZIS A.C., BOBOS D.P.
Tetralogy of Fallot: influence of right ventricular outflow tract reconstruction on late outcome.
International journal of cardiology, 2004, vol 97, suppl 1, 87-90

[86] MURPHY J.G., GERSH B.J., MAIR D.D.

[87] Oberhänsli I., Schorderet D., Laufer D., Rouge J.C., Faidutti B., Friedli B.
Tétralogie de Fallot: évolution à long terme après une opération correctrice Schweiz.

[88] VIART P., DEUVAERT F., GALLEZ A.
Résultats tardifs des cures de tétralogie de Fallot.

[89] PRESBITERO P., DEMARIE D., ARUTA E.
Results of total correction of tetralogy of Fallot performed in adults.
[90] ARDINGER R.

[91] GATZOULIS M.A., BALAJI S., WEBBER S.A.
Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentric study.

[92] NAKAZAWA M., SHINOHARA T., SASAKI A.
Arrhythmias late after repair of tetralogy of Fallot - a Japanese multicentric study.

[93] BRILI S., AGGELI C., GATZOULIS K.
Echocardiographic and signal averaged ECG indices associated with non-sustained ventricular tachycardia after repair of tétralogy of Fallot.
Heart 2001; 85:57- 60

[94] BRICKER J.T.
Sudden death and tetralogy of Fallot: risks, markers and causes.

[95] STEEDS R.P., OAKLEY D.
Predicting late sudden death from ventricular arrhythmia in adults following surgical repair of tetralogy of Fallot.

[96] ESC GUIDELINES 2010
Guidlines for the management of grown-up congenital heart disease (GUCH).
Eur Heart J 2010
[97] KARIM OULDIM ET AL.
Syndromes microdélétionnels (syndrome de Williams et syndrome de la délétion 22q11) au CHU Hassan II de Fès: à propos de 3 observations
The Pan African Medical Journal - ISSN 1937- 8688

[98] M SCHNEIDER, S ELIEZ.
La microdélétion 22q11-2. Arch Pediatr. 2010 Apr;17(4):431-4

[99] DE SMEDT B, DEVRIENDT K, FRYNS JP, ET AL.

[100] MARIN RODRIGUEZ, C.; ÁLVARO, E. MAROTO
Angiografía con contraste por resonancia magnética en las cardiopatías congénitas, Publicado en Radiologia. 2009;51:261-72. - vol.51 núm 03

[101] FARSANI HY MOGHADAM MY
Determination of TOF Characteristics in Iranian Patients Iran J Pediatr, Vol 17, No 1, Mar 2007

[102] DYAMENAHALLI U, MC CRINDLE BW, BACKER GA.
Influence of perioperative factors on outcomes in children younger than 18 months After repair of tetralogy of Fallot.
The Annals of thoracic surgery, 2000, vol 69, N°4, 1236-1242

[103] CORNO AF, FOSTA .P
Congenial heart defects
Decision making for cardiac surgery volume 3, P57-65