Table des matières

I. **INTRODUCTION** ... 4

II. **LES PRINCIPAUX RHUMATISMES INFLAMMATOIRES CHRONIQUES** 5

1. Polyarthrite rhumatoïde ... 5
 1.1. Physiopathologie ... 5
 1.2. Anatomopathologie ... 5
 1.3. Epidémiologie et clinique .. 6
 1.4. Biologie .. 6

2. Spondylarthropathies ... 6
 2.1. Physiopathologie ... 7
 2.2. Anatomopathologie ... 7
 2.3. Epidémiologie et clinique .. 7
 2.4. Biologie .. 8

3. Pseudo-polyarthrite rhizomyélique ... 8
 3.1. Physiopathologie ... 8
 3.2. Anatomopathologie ... 9
 3.3. Epidémiologie et clinique .. 9

III. **DIAGNOSTIC DES RHUMATISMES INFLAMMATOIRES CHRONIQUES** 10

1. Diagnostic positif ... 10

2. Diagnostic étiologique ... 10
 2.1. Signes cliniques d’orientation .. 10
 a- Articulaires .. 10
 b- Extra-articulaires ... 10
 2.2. Examens biologiques .. 11
 2.3. Critères diagnostiques ... 12
IV. TECHNIQUES D’IMAGERIE DANS LES RHUMATISMES INFLAMMATOIRES

CHRONIQUES.. 13

1. Radiographie standard .. 13
 1.1. Valeur diagnostique .. 13
 1.2. Méthode de réalisation de l’examen .. 14
 1.3. Avantages et inconvénients .. 14

2. Tomodensitométrie .. 14
 2.1. Valeur diagnostique .. 14
 2.2. Méthode de réalisation de l’examen .. 15
 2.3. Avantages et inconvénients .. 15

3. Imagerie par résonance magnétique .. 15
 3.1. Intérêt diagnostique .. 15
 3.2. Méthode de réalisation de l’examen .. 16
 3.3. Avantages et inconvénients .. 16

V. Echographie .. 17

1. Historique ... 17

2. Caractéristiques technologiques .. 19

3. Différentes structures analysées par l’échographie ... 23
 3.1. Tissus mous .. 23
 3.2. Os et cartilage ... 25
 3.3. Grosses articulations .. 25
 3.4. Petites articulations .. 26

4. Avantages et inconvénients ... 26

VI. PATIENTS ET METHODE ... 28

1. Patients ... 28

2. Méthode ... 28

3. Echographie ostéo-articulaire ... 28
3.1. Protocole d’étude ... 28
3.2. Paramètres étudiés .. 29

VII. RESULTATS ... 35
1. Caractéristiques des patients .. 35
2. Analyse descriptive ... 36
 2.1 Clinique .. 36
 2.2. Echographie .. 37
 2.2.1. Synovite .. 37
 2.2.2. Ténosynovite ... 39
 2.2.3. Erosion osseuse .. 40
 2.2.4. Enthésopathie ... 42
 2.2.5. Complications ... 43

VIII. DISCUSSION ... 47
IX. CONCLUSION ... 52
I. INTRODUCTION :

Le diagnostic d’un rhumatisme inflammatoire présente de grandes difficultés surtout dans les formes débutantes.

En effet, les moyens diagnostiques classiques reposant sur la clinique, la biologie et la radiologie standard, sont souvent pris au défaut au début de la maladie rhumatismale.

Or, le diagnostic précoce représente un enjeu considérable, en particulier dans le cas de la polyarthrite rhumatoïde car seul un traitement précoce peut en améliorer le pronostic fonctionnel.

L’insuffisance des moyens diagnostiques dans les rhumatismes inflammatoires débutants incite donc à envisager des investigations plus performantes.

Dans le domaine de l’imagerie, les progrès techniques récents de l’échographie ostéo-aticulaire permettent d’envisager son utilisation dans l’étude des petites articulations en particulier chez des patients souffrant de polyarthrite rhumatoïde.

Les travaux récents ont effectivement montré de bonnes performances de l’échographie dans l’analyse des articulations distales, aussi bien dans le domaine des atteintes inflammatoires que celui des dommages structuraux.

Dans ce travail nous nous sommes intéressés à l’apport de l’échographie pour la détection des érosions osseuses, des synovites, des ténosynovites et leurs complications chez les patients atteints de rhumatismes inflammatoires chroniques.

Notre étude prospective et rétrospective a concerné une série de 26 patients suivis en consultation ou hospitalisés dans le service de Rhumatologie du CHU Hassan II de Fès durant la période du mois de Mai 2010 au mois de Février 2011.
II. LES PRINCIPAUX RHUMATISMES INFLAMMATOIRES

CHRONIQUES

Nous allons décrire les rhumatismes inflammatoires les plus fréquents à savoir :

- La polyarthrite rhumatoïde
- Les spondylarthropathies
- La pseudopolyarthrite rhizomélïque (PPR)

1. Polyarthrite rhumatoïde (PR)

La PR est le plus fréquent des rhumatismes inflammatoires chroniques. Elle affecte principalement les articulations synoviales du squelette appendiculaire et du rachis cervical supérieur et très peu les enthèses, contrairement aux spondylarthropathies.

1.1. Physiopathologie [1]

Multifactorielle, elle fait intervenir différents facteurs, probablement intriqués : génétiques, immunologiques, psychologiques et environnementaux. Leur conjonction aboutit, entre autres, à un dérèglement de l’immunité à médiation cellulaire dont la membrane synoviale constitue l’élément cible. Une prolifération synoviale inflammatoire se développe au sein des articulations (synovites articulaires), des gaines tendineuses (ténosynovites) et des bourses séreuses (bursites). Aggressive, elle est secondairement responsable des érosions osseuses, de la chondrolyse et à plus long terme, de la destruction articulaire et périarticulaire.

1.2. Anatomopathologie [1]

L’inflammation synoviale est importante. Elle se caractérise par une prolifération vasculaire et une néo-angiogénèse, une hyperplasie synoviale (pannus
rhumatoïde), une nécrose fibrinoïde et la sécrétion de diverses substances, notamment de cytokines pro-inflammatoires et d’enzymes protéolytiques.

1.3. **Épidémiologie et clinique** [2]

La PR prédomine chez la femme (sex-ratio de 3/1 à 4/1), du moins entre 40 et 60 ans. Elle débute aux poignets, aux mains et aux avant-pieds, et peut se manifester cliniquement par :

- une mono-, une oligo- ou une polyarthrite chronique ;
- des polyarthralgies d’horaire inflammatoire ;
- une ténosynovite ;
- une raideur articulaire matinale.

Elle évolue par poussées successives, vers la polyarthrite bilatérale et symétrique. Au fil du temps, la destruction articulaire et les lésions capsulotendinoligamentaires sont responsables de déformations et d’un handicap fonctionnel sévère.

1.4. **Biologie** [2]

Il existe habituellement un syndrome inflammatoire biologique non spécifique. Le facteur rhumatoïde est présent chez 70 à 80 % des patients (contre 2 % dans la population générale), mais après au moins un an d’évolution. Les anticorps antikératine, très spécifiques de la PR, peuvent être présents au début de l’affection.

2. **Spondylarthropathies**

Les spondylarthropathies regroupent la spondylarthrite ankylosante, le rhumatisme psoriasique, les arthrites réactionnelles, les arthrites associées aux entérocolopathies inflammatoires chroniques et les spondylarthropathies indifférenciées. Elles affectent les articulations synoviales du squelette axial et/ou
appendiculaire, les articulations cartilagineuses et les enthèses (sites d’insertion osseuse des tendons, ligaments, capsules articulaires et fascias).

2.1. Physiopathologie [1]

Comme pour la PR, la physiopathologie des spondylarthropathies demeure incertaine : facteurs génétiques (présence de l’antigène HLA B27) et/ou environnementaux (bactériens notamment). Toutes ces affections ont cependant en commun l’atteinte inflammatoire de l’enthèse (ou enthésite).

2.2. Anatomopathologie [1]

L’enthèse (fibrocartilagineuse notamment) constitue la cible privilégiée des spondylarthropathies. L’enthésite évolue classiquement en trois phases :

- une phase d’ostéite sous-chondrale ;
- une phase érosive ;
- une phase d’ossification cicatricielle.

L’inflammation osseuse se propagerait secondairement à la synoviale (synovite non spécifique).

2.3. Épidémiologie et clinique [2]

Les spondylarthropathies prédominent chez l’homme jeune, entre 30 et 50 ans. Elles débutent au rachis et aux sacroiliaques (spondylarthrite ankylosante notamment et rhumatisme psoriasique) et/ou aux extrémités (rhumatisme psoriasique). Elles peuvent se manifester cliniquement par :

- des douleurs lombaires ou des douleurs de fesse d’horaire inflammatoire ;
- une mono- ou une oligoarthrite chronique asymétrique (doigt ou orteil en « saucisse » en cas de rhumatisme psoriasique) ;
- des talalgies d’horaire inflammatoire ;
- une raideur rachidienne ou articulaire matinale.

Des manifestations extra-articulaires (cutanées, oculaires...) sont également possibles. Les spondylarthropathies évoluent plus lentement que la PR, par
poussées entrecoupées de rémissions, vers l’enraidissement rachidien (spondylarthrite ankylosante) et/ou articulaire, et parfois, la destruction articulaire (rhumatisme psoriasique).

2.4. Biologie [2]

Le bilan immunitaire est limité, mais la recherche d’auto-anticorps doit permettre d’éliminer certains diagnostics différentiels. Seuls auto anticorps qui peuvent être observés dans les SP sont les facteurs rhumatoïdes (FR). Ces FR sont observés dans 5 à 10 % des SPA et dans 10 à 20 % des rhumatismes psoriasiques. Dans ce contexte, ces FR n’ont pas d’intérêt diagnostique ou pronostique particulier.

La recherche de HLA B27 ne se justifie que dans les formes débutantes et/ou atypiques de SP. Dans ce contexte, la découverte de HLA B27 doit toujours être interprétée avec prudence car 7 à 10 % de la population caucasoïde porte au moins un allèle HLA B27.

3. Pseudopolyarthrite rhizomélique (PPR)

La PPR est un syndrome clinique du sujet âgé habituellement caractérisé par des douleurs inflammatoires des ceintures.

3.1. Physiopathologie [1]

Elle demeure encore aujourd’hui controversée (origine génétique, infectieuse ou endocrinienne), même si l’on connaît la relation étroite existant entre PPR et maladie de Horton (artérite inflammatoire temporaire du sujet âgé), la PPR pouvant accompagner ou précéder la maladie de Horton. La PPR s’accompagne d’une inflammation synoviale (synovites, ténosynovites, bursites) et/ou périarticulaire. Celle-ci demeure limitée, par comparaison à celle de la PR, et n’entraîne pas de destruction articulaire et périarticulaire.
3.2. **Anatomopathologie** [1]

L’inflammation synoviale est modérée. Elle se caractérise par une prolifération vasculaire et une infiltration synoviale par des macrophages et des lymphocytes T.

3.3. **Épidémiologie clinique** [1]

La PPR survient de manière élective chez le sujet âgé, à partir de 50 à 65 ans, et son incidence augmente avec l’âge. Elle serait un peu plus fréquente chez la femme que chez l’homme. Elle débute classiquement par des arthralgies et/ou des myalgies bilatérales des ceintures. La ceinture scapulaire (70–95% des cas) est plus fréquemment touchée que la ceinture pelvienne (50–70% des cas). L’état général est souvent altéré. Des manifestations périphériques, isolées (environ un tiers des cas), ou associées à l’atteinte proximale (environ deux tiers des cas [24]), peuvent également survenir, dans 12 à 45 % des cas. Elles traduisent des synovites des petites et grosses articulations du squelette appendiculaire, des ténosynovites et/ou des bursites. D’autres aspects cliniques peuvent ainsi être rencontrés :

- une oligo- ou une polyarthrite chronique ;
- des polyarthralgies d’horaire inflammatoires ;
- des tuméfactions articulaires ou périarticulaires ;
- un syndrome du canal carpien ;
- une raideur articulaire matinale ;
- des cervicalgies inflammatoires.
III. **DIAGNOSTIC DES RHUMATISMES INFLAMMATOIRES**

CHRONIQUES

1. **Diagnostic positif**

Il repose sur l’existence de douleurs articulaires de rythme inflammatoire réveillant le patient en deuxième partie de nuit et entrainant un dérouillage matinal prolongé.

A l’examen, la constatation de signes cliniques d’inflammation articulaire témoigne d’une synovite mais ces signes sont souvent absents dans les maladies débutantes.

La biologie peut donner une confirmation supplémentaire en révélant un syndrome inflammatoire sérique ou dans le liquide articulaire avec une augmentation de la cellularité.

2. **Diagnostic étiologique**

2.1 **Signes cliniques d’orientation**

a) **Articulaires** :

Une atteinte distale, symétrique et additive oriente plutôt vers une polyarthrite alors que des douleurs axiales ou oligo-arthrite asymétrique sont plutôt en faveur d’une spondylarthropathie.

b) **Extra- articulaires** :

L’existence d’une fièvre doit faire rechercher une origine infectieuse mais également caractéristique d’une maladie de Still.

Les signes cutanéo-muqueux sont variés et peuvent avoir une grande valeur diagnostique. Les connectivites comportent très souvent des signes cutanés : le verspetilio ou la photosensibilité dans le lupus, la sclérodactylie et les télangiectasies dans le sclérodermie, le purpura ou le syndrome de Raynaud dans
de nombreuses vascularites. On peut également citer l’érithème noueux dans la sarcoïdose, l’aphtose dans la maladie de Behçet ou l’érithème chronique migrant dans la maladie de Lyme. La notion de psoriasis cutané, personnel ou familial, est également très importante dans le cadre du diagnostic de rhumatisme psoriasique. Les érythèmes aspécifiques peuvent se rencontrer aussi bien dans la maladie de Still que de nombreuses viroses.

Les signes ophthalmologiques sont à rechercher, les uvéites et conjonctivites orientant vers les spondylarthropathies et le syndrome sec de Gougerot-Sjögren.

Les atteintes digestives à type de diarrhée doivent faire évoquer une arthrite réactionnelle ou une maladie inflammatoire chronique de l’intestin alors que les atteintes hépatiques doivent faire penser à l’hémochromatose.

2.2 Examens biologiques :

Le syndrome inflammatoire n’est pas spécifique.

En revanche le bilan immunologique avec facteurs rhumatoïdes et anticorps antinucléaires à une valeur d’orientation s’il est positif. Cependant, il est souvent négatif au début et n’est pas spécifique. D’autres auto-anticorps ont une meilleure spécificité (anti- kératine pour la polyarthrite rhumatoïde, anti-DNA natifs pour le lupus...) mais d’apparition parfois tardive.

Le groupage HLA a surtout un intérêt dans le cas du B27 pour les spondylarthropathies.

Certaines sérologies peuvent être réalisées selon le contexte pour le diagnostic d’arthrite virale ou réactionnelle.

En cas d’épanchement intra-articulaire ponctionnable, il faudra s’aider de l’examen du liquide articulaire qui, outre l’hypercellularité, pourra mettre en évidence un germe ou des microcristaux.
2.3 Critères diagnostiques [3,4]

Des critères diagnostiques ont été établis pour un certain nombre de rhumatismes inflammatoires ou maladies systémiques. Il s’agit le plus souvent d’un ensemble d’éléments cliniques, biologiques voire radiographiques qui permettent de faire un diagnostic correct avec une probabilité.

Ces critères diagnostiques ont été établis pour un certain nombre de rhumatismes inflammatoires comme la polyarthrite rhumatoïde « critères ACR 1987 » (annexe 1). Les spondylarthropathies « critères d’Amor » (annexe 2), la maladie de Still, le lupus, le syndrome de Gougerot-Sjögren.

Malgré tout, la sensibilité de ces critères est souvent faible dans les formes débutantes et leur spécificité n’est pas de 100%

Les critères ACR 1987, par exemple, ont été établis sur une population de polyarthrites rhumatoïdes avec une durée moyenne d’évolution de 7 ans, permettant d’obtenir une sensibilité de 91%et une spécificité de 89% Mais d’autres auteurs ont montré que la sensibilité était beaucoup moins importante dans le cas de polyarthrites débutantes, et que la spécificité n’était pas toujours aussi bonne dans toutes les populations ().

Or la prise en charge thérapeutique précoce de ces rhumatismes inflammatoires permet d’améliorer le pronostic fonctionnel à moyen et long terme, notamment dans le cas de la polyarthrite rhumatoïde et depuis l’apparition de nouvelles biothérapies ()
IV. TECHNIQUES D’IMAGERIE DANS LES RHUMATISMES INFLAMMATOIRES CHRONIQUES :

L’imagerie présente un certain nombre d’intérêts dans le diagnostic des rhumatismes inflammatoires chroniques.

Elle a pour objectif :

- De différencier une polyarthrite de polyarthralgies
- De détecter une synovite, une ténosynovite et une atteinte érosive.
- D’approcher le diagnostic étiologique.

Nous allons exposer l’intérêt et les limites de ces différentes techniques d’imagerie dans les rhumatismes inflammatoires chroniques.

1. La radiographie standard

La radiographie reste le gold-standard pour le diagnostic et le suivi des rhumatismes inflammatoires chroniques [5].

Cependant elle ne donne pas d’informations sur l’atteinte inflammatoire et semble actuellement moins performante que d’autres examens pour la détection des lésions osseuses.

Elle reste de référence pour le suivi évolutif des patients.

1.1. Valeur diagnostique :

Les érosions sont considérés comme le critère diagnostique le plus fiable de la polyarthrite rhumatoïde cependant il peut y avoir des érosions dans d’autres rhumatismes inflammatoires comme le rhumatisme psoriasique.

Le critère érosion a une meilleure reproductibilité que l’évaluation de déminéralisation ou du pincement articulaire.

Dans les rhumatismes inflammatoires indifférenciés, la radiographie des mains aurait une sensibilité de 17% et une spécificité de 96% pour les érosions [6].
Dans le cas de polyarthrites rhumatoïdes de moins d’un an, la sensibilité varie entre 7 et 23% selon les séries pour les radiographies de mains et de poignets et de 2,4 à 47% si les radiographies de pieds sont également réalisées [7].

La sensibilité est faible car les signes radiologiques sont souvent d’apparition tardive, au moins 6 mois à un an après le début de la maladie.

1.2. Méthode de réalisation de l’examen

Les incidences de face postéro-antérieur sont les plus couramment utilisées.

Certains auteurs préconisent cependant la réalisation de clichés des mains de ¾ qui permettaient une meilleure visualisation des lésions, notamment au niveau du carpe ou en supination pour les atteintes des métacarpophalangiennes [8].

L’intérêt de radiographies des autres articulations dans la polyarthrite rhumatoïde n’est pas établi ; cependant certaines études ont montré qu’il existait parfois une atteinte précoce des grosses articulations dans la polyarthrite rhumatoïde, entraînant un retentissement fonctionnel important [9].

1.3. Avantages et inconvénients :

La radiographie standard permet d’étudier les érosions osseuses et le pincement articulaire. Elle présente l’avantage de son faible coût, de sa disponibilité et de sa bonne spécificité. En revanche, elle manque de sensibilité et est irradiente.

2. Le scanner

Très peu d’études se sont intéressées à l’utilisation du scanner dans les rhumatismes inflammatoires chroniques.

2.1. Valeur diagnostique

Le scanner est certainement plus intéressant pour l’analyse des lésions osseuses que pour celles des tissus mous.
Une étude [10] a montré que le scanner permettait une bonne visualisation des érosions de la tête humérale dans la polyarthrite rhumatoïde mais de façon moins sensible que l’IRM ou l’échographie.

Il n’y a pas d’étude dans les rhumatismes inflammatoires indifférenciés et les autres travaux concernent surtout les grosses articulations comme les sacro-iliaques dans la spondylarthropathie.

2.2. **Méthode de réalisation**

Coupes millimétriques en mode hélicoïal avec des filtres adaptés (os et parties molles) permettant ainsi des reconstructions multilplanaires avec une très bonne résolution.

2.3. **Avantages et inconvénients** :

Le scanner, même s’il permet une meilleure analyse spatiale des structures ostéoarticulaires que la radiographie standard, présente les mêmes limites que celle-ci pour la visualisation des parties molles et son caractère irradiant.

3. **l’IRM**

Elle a fait l’objet de plusieurs travaux qui révèlent l’intérêt de cet examen notamment sur les articulations distales des polyarthrites récentes.

3.1. **Valeur diagnostique**

 L’inflammation :

D’après Sugimoto et al. [12], une prise de contraste périarticulaire des poignets, des MCP et/ou des IPP des 2 mains permettrait de faire le diagnostic de PR de façon plus sensible que les critères ACR 1987.
Cette étude a montré une sensibilité de 100% une spécificité de 73% et une valeur prédictive de 100%, mais un autre travail du même auteur révélait quelques faux positifs en IRM.

Les lésions osseuses:

L’IRM semble plus performante que la radiographie standard dans la recherche des érosions osseuses.

Les lésions osseuses sont révélées par un hyposignal T1 et hypersignal en T2 avec saturation de graisse correspondant à un œdème osseux non spécifique ou de véritables érosions.

Pour Backhaus et al. l’IRM permettait de détecter des érosions chez 80% des patients (26/32° porteurs d’une polyarthrite débutante sans lésion radiologique (I).

Les anomalies osseuses observées à l’IRM pourraient avoir une valeur pronostique sur l’apparition ultérieure d’érosions radiographiques [7,13].

3.2. Méthode de réalisation

L’IRM est le plus souvent réalisée en séquence T1, T2 avec saturation de graisse et injection de gadolinium.

Mais il n’a pas de consensus sur la technique de réalisation de l’examen : appareil dédié ou antenne de surface, type de séquence, orientation et épaisseur de coupes, temps de réalisation après injection. Les variations techniques entrainent des problèmes de reproductibilité.

3.3. Avantages et inconvénients :[14]

L’IRM permet une excellente visualisation des parties molles, mais une mauvaise visualisation de l’os en dehors de l’œdème osseux. L’IRM a l’avantage de son caractère non irradiant et est considérée comme un gold standard, grâce à sa capacité à évaluer directement l’inflammation des tissus par l’injection de gadolinium.
Malheureusement son coût et sa disponibilité rendent son utilisation plus difficile dans la pratique courante.

Plus récemment, une nouvelle technique d’IRM a été développée : l’IRM dédiée à l’imagerie ostéoarticulaire. Il s’agit de petites machines, moins coûteuses, adaptées aux articulations. L’acceptabilité de l’examen est meilleure que sur les appareils corps entiers en raison d’une position plus confortable, du moindre bruit et de l’absence d’enfermement. L’IRM dédiée a été principalement développée pour des bas champs (0,2 Tesla). Ces machines comportent des contraintes importantes : un rapport signal-bruit moins élevé qu’en haut champ, d’où une qualité d’image inférieure, un champ de vue limité (14 cm à 18 cm), une durée d’examen supérieure à celle des appareils corps entiers (20 à 30 min environ) et une séparation spectrale de l’eau et de la graisse incomplète (limitant leur utilisation pour l’exploration des pathologies de la moelle et les examens nécessitant l’injection de produit de contraste intraveineux).
V. **ÉCHOGRAPHIE-DOPPLER**

1. **Historique :**

L’histoire de l’évolution du matériel échographique explique en partie le développement de cette technique dans l’imagerie de l’appareil locomoteur.

La première publication concernant l’échographie de l’appareil locomoteur date de 1958 par Dussik et al. qui a mesuré l’atténuation acoustique des tissus articulaire et péri-articulaires bovins [15]. Ce travail a établi les effets de différents processus pathologiques articulaires sur l’atténuation des ultrasons. Les ultrasons sont émis par une sonde vers des organes qui les réfléchissent selon leur forme et leur structure. Ceci permet de recomposer l’image des coupes ainsi réalisées sur un écran vidéo en échelle de gris : c’est ce qu’on appelle le mode B ou le mode anatomique. La première image en mode B d’une articulation humaine a été publiée en 1972 par DG McDonald et GR Léopold ; ils avaient utilisé l’échographie pour différencier un kyste de Baker d’une thrombosphlébite [16].

Avec l’apparition des sondes à balayage linéaire à haute fréquence à la fin des années 70, de superbes images des structures superficielles furent produites, dont l’intérêt apparu d’emblée évident pour beaucoup de radiologues. Plusieurs études fondées sur des balayages effectués systématiquement tous les centimètres dans le plan sagittal et frontal furent réalisées principalement dans les pays anglo-saxons. En 1978, Cooperberg et al. firent la première démonstration d’une synovite dans la polyarthrite rhumatoïde (PR) [17].

Au milieu des années 80, les appareils de l’imagerie en temps réel progressèrent et des travaux sur la description échographique des structures musculo-squelettiques, réalisés en France par Fornage [18] entrainèrent un véritable engouement pour l’échographie ostéo-articulaire créant le désir pour beaucoup de radiologues d’élargir leur champ d’activité grâce à cette technique.
En 1988, de Flaviis et al. Détailèrent les caractéristiques échographiques des synovites, ténosynovites et érosions d’une main atteinte de PR [19]. Des artéfacts, à l’origine de faux positifs ainsi que de nombreuses erreurs entrainèrent une grande désillusion chez les prescripteurs ; d’autant plus qu’ils ne pouvaient pas interpréter eux- mêmes les images, ni contrôler la qualité de l’examen effectué.

À la fin des années 80, on assister à un déclin de l’intérêt pour l’échographie ostéo-articulaire inversement proportionnel au développement de la tomodensitométrie et de l’imagerie par résonance magnétique.

Au début du 21ème siècle, les ultrasons sont utilisées de façon courante dans le diagnostic et le suivi de pathologies rhumatologiques grâce à l’excellente résolution spatiale des sondes, la possibilité d’examens dynamiques en temps réel, la grande disponibilité et le faible coût.

2. Caractéristiques technologiques

Depuis quelques années, grâce aux progrès technologiques, nous disposons d’appareils d’échographie très performants. En effet, la plupart des appareils sont équipés de sondes à larges bandes ayant une fonction multifréquence. Le choix de la fréquence dépend de la structure étudiée et surtout de sa profondeur. Plus les structures anatomiques sont profondes plus la fréquence de la sonde doit être
basse. La résolution spatiale de l’échographie est excellente avec les sondes hautes fréquences dont l’utilisation est indispensable en rhumatologie pour l’étude des structures superficielles (doigts). La résolution de l’échographie avec une sonde de 10 MHz est de l’ordre de du millimètre. En rhumatologie, l’échographie doit idéalement être munie de deux sondes : une sonde haute fréquence et une sonde de plus basse fréquence permettant l’exploration des articulations profondes (hanche).

L’échographie ostéoarticulaire en mode B (mode anatomique) est le mode le plus utilisé en rhumatologie. Il donne des images en deux dimensions. L’amplitude de l’écho module le niveau de gris du moniteur vidéo. En mode B, de nombreux artéfacts échographiques existent. Il est important de les connaître d’une part pour ne pas faire une interprétation erronée de l’image, et d’autre part ces artéfacts permettent parfois de reconnaître certaines structures anatomiques :

- Le cône d’ombre acoustique (Fig. 1) correspond à l’interception du faisceau ultrasonore par une structure très réfléchissante en arrière de laquelle se forme un cône d’ombre acoustique où aucune image n’est visible. Les cônes d’ombre permettent de repérer entre autres les calcifications tendineuses denses.
- L’anisotropie (Fig. 3) apparaît lorsque la sonde n’est pas strictement perpendiculaire à la structure étudiée, ce qui donne une image faussement hypoéchogène. Les phénomènes d’anisotropie sont fréquents dans l’étude des tendons et permettent par exemple de différencier une structure tendineuse d’une structure nerveuse. Le nerf se distingue du tendon et du muscle par son absence quasi-totale d’anisotropie.
- Le renforcement postérieur se produit lorsque l’écho traverse une zone liquidienne dont l’atténuation est globalement plus faible qu’une
structure solide comme le faisceau est moins atténué il apparait en arrière de la zone liquidienne un zone hyperéchogène amplifiée.

- L’artéfact de répétition (Fig. 2) est aussi appelé échos multiples. Il peut apparaître lorsque l’écho rencontre certaines structures (fer, aiguille). Dans ce cas, il apparait une série d’échos dont l’amplitude diminue (image en queue de comète).

![Figure 1: Cône d’ombre acoustique provoqué par une calcification](image1)

![Figure 2: Artéfact de répétition : image en queue de comète sous l’aiguille (geste échoguidé).](image2)

![Figure 3: Phénomène d’anisotropie, coupe transversale comparative sur le même tendon avec une inclinaison différente de la sonde (A, B).](image3)
Les autres modes utilisés sont le mode Doppler énergie (ou puissance) et de Doppler couleur. Le mode Doppler énergie permet de visualiser la microcirculation : ce mode détecte les flux lents et permet en quelque sorte de mesurer « l’activité de la maladie » d’un rhumatisme inflammatoire. Le codage se fait selon l’énergie des cibles mobiles et non pas selon leur vitesse circulatoires (différent du doppler couleur). Ce mode détecte tous les tissus en mouvement.

Le mode doppler couleur permet de superposer les images échographiques en niveaux de gris aux vitesses circulatoires (représentées selon un codage couleur) proche d’un codage pulisé. Il permet la visualisation des petits et gros vaisseaux et l’étude des flux rapides.

L’échographie de contraste appliquée à l’étude des pathologies ostéoarticulaires reste encore du domaine de la recherche clinique. L’injection de produit de contraste ultrasonore permet de rehausser les microvaisseaux et donc de mieux détecter et quantifier l’activité inflammatoire de la synovite, ou d’autres structures impliquées dans les pathologies musculo-squelettiques. Malgré un intérêt théorique certain à identifier les structures microvasculaires, les spécificités de l’appareil locomoteur limitent l’utilisation des agents de contraste ultrasonores, expliquant le développement lent de cette technique d’imagerie. Néanmoins, l’accès récent à des explorations en temps réel et à des données quantitatives est prometteur. La majorité des études publiées concernent la PR et montrent son intérêt pour améliorer le diagnostic, préciser l’activité de la maladie, et suivre les patients sous traitement [21]. Ces premières données sont étendues à d’autres pathologies rhumatismales mais également pathologie dégénératives [21]. De nouvelles applications apparaissent, en particulier en pathologie musculaire, et laissent entrevoir tout le potentiel que présente cette nouvelle technique d’imagerie.
3. Les différentes structures analysées par l’échographie

3.1. Les tissus mous [22]:

- Le synovial est difficilement visualisable à l’état normal. Elle est indissociable de la capsule hyperéchogène qu’elle tapisse. Ses feuillets peuvent être séparés par une fine lame anéchogène s’il existe physiologiquement une petite quantité de liquide dans un récessus. La réflexion de la membrane dans les bourses séreuses permet de distinguer les feuillets sous forme de fines structures échogènes. Sur les coupes axiales la synoviale des gaines tendineuses se présente sous forme d’une fine couronne hypoéchogène à peine perceptible (fig. 6 et 7).

- La capsule se présente comme une ligne hyperéchogène fibrillaire d’aspect similaire au ligament qui la renforce.

- La cavité articulaire est en partie masquée par les structures osseuses. Seule la partie périphérique de l’interligne peut être visualisée. La recherche d’un épanchement se fait donc le plus souvent au niveau des récessus où le liquide peut être visualisé sous forme d’une lame anéchogène.

- Les tendons (fig. 4) présentent un aspect hyperéchogène fibrillaire linéaire à bords réguliers et parallèles sur les coupes longitudinales. Sur les coupes
axiales, le tendon est ovalaire, hyperéchogène au centre et discrètement hypoéchogène en périphérie. Lorsqu’il est synovialisé, le tendon est entouré d’une fine couronne hyperéchogène le plus souvent imperceptible. A l’état normal le tendon coulisse parfaitement sans accrochage lors des mouvements.

![Figure 4](achille_sagittal.png)

Figure 4 : Tendon normal présentant une structure fibrillaire et des bords parallèles. Coupe longitudinale

- Les nerfs (fig. 5) ont un aspect proche à celui des tendons. Cependant ils sont moins sensibles aux artéfacts d’anisotropie, sont plus hypoéchogène avec un aspect folliculaire sur les coupes axiales et fasciculé sur les coupes longitudinales. Ils se mobilisent peu lors des mouvements.
3.2. L’os et le cartilage

L’échographie ne peut analyser que la partie superficielle de l’os qui apparaît sous forme d’une ligne hyperéchogène régulière non interrompue. La corticale de l’os peut être le siège d’irrégularité physiologiques dont il faut connaître la topographie.

L’étude échographique du cartilage articulaire a surtout été rapportée au niveau du genou avec une bonne corrélation avec les constatations opératoires et une bonne reproductibilité inter et intra-observateur [17]. Ces performances restent cependant inférieures à celle de l’IRM, notamment dans une étude sur des genoux d’arthritis chronique juvénile.

3.3. Les grosses articulations

De nombreuses études on été réalisées sur les grosses articulations et notamment l’épaule pour l’analyse de pathologies tendineuses. Cependant la précision anatomique n’est pas aussi bonne que celle de l’IRM ou de l’arthroscanner pour l’étude de ces pathologies périarticulaires.

L’échographie est également intéressante pour détecter un épanchement.
La fréquence de la sonde n’a pas besoin d’être supérieure à 7.5MHz pour l’étude des grosses articulations.

3.4. Les petites articulations

C’est grâce aux sondes à haute fréquence qui permettent une meilleure résolution spatiale qu’on a pu étudier de façon plus performante les petites articulations.

L’étude dorsale sagittale des MCP montre le cartilage sous forme d’une fine lame hypoéchogène et homogène. Le cartilage métacarpien et la phalange proximale dessinent un angle donnant un aspect en « aile de mouette » soulignée par la graisse environnante [22].

A la base phalangienne sur le versant palmaire on visualise la plaque palmaire (fibrocartilage glénoïdien) sous forme d’un épaississement hyperéchogène.

4. Avantages et inconvénients: [23-24]

L’échographie, grâce aux avancés technologiques tel que le Doppler et la meilleure résolution des sondes, permet une étude précise des structures ligamentaires, tendineuses, musculaires, osseuses et articulaires. De nombreuses études comparant la sensibilité et la spécificité de l’échographie par rapport au « gold standard », l’IRM, ont permis de valider cette technique, en particulier dans les RIC. L’échographie est un examen très performant pour la visualisation des synovites et érosions ; en revanche elle ne permet pas la mise en évidence de l’œdème osseux.

L’échographie en rhumatologie a également un intérêt thérapeutique, car elle permet de guider les gestes d’infiltration, de ponction ou de biopsie.

Elle présente l’avantage de son caractère non irradiant, de sa grande disponibilité, et permet en outre d’examiner plusieurs sites articulaires dans le même temps. C’est un examen dynamique et facilement renouvelable. Enfin son
cout est bien inférieur à celui d’une IRM. Toutefois, les performances de l’échographie dépendent étroitement des qualités techniques de l’appareil, et donc de son coût. Enfin, il s’agit d’un examen opérateur dépendant et difficilement interprétable par le prescripteur, pour lequel la maîtrise technique nécessite une longue période d’apprentissage et une pratique régulière, notamment en raison d’artéfacts qui produisent des images d’interprétation délicate.
VI. PATIENTS ET METHODES

Notre étude prospective et rétrospective a concerné 26 patients suivis en consultation ou hospitalisés dans le service de Rhumatologie du CHU Hassan II de Fès durant la période du mois de Mai 2010 au mois de Février 2011.

1. Patients:

Critère d’inclusion : il s’agissait de recruter des patients présentant une polyarthrite ou des polyarthralgies d’horaire inflammatoire à prédominance distale. Les symptômes devraient être présents depuis 2 mois au moins.

2. Méthode :

Pour chaque patient :
- Un examen clinique a été réalisé par un rhumatologue sénior ou junior.
- Un bilan d’imagerie comprenant radiographies et échographie ostéo-articulaire.

3. L’Echographie ostéoarticulaire

3.1. Protocole d’étude :

Nous avons utilisé pour ce travail une sonde linéaire de haute fréquence (8-16 MHz). Pour le doppler, le réglage du PRF (Pulse repetition Frequency) se faisait autour de 1000 MHz, le gain étant augmenté au maximum avant l’apparition de signaux artéfactiels en regard de la corticale osseuse.

Les examens ont tous été réalisés par le même opérateur entrainé (Pr Tizniti).

Pour l’étude des mains : Le patient était positionné assis en face de l’examinateur, mains posées à plat en position neutre sur une table. L’opérateur pratiquait une étude bilatérale et symétrique des faces dorsale et palmaire, en coupes longitudinale et transversale.
Pour l’étude des pieds : Le patient était en décubitus dorsal ou ventral (pour le tendon d’Achille) et on analysait les faces dorsale et plantaire en coupe longitudinale et transversale.

3.2. **Paramètres étudiés:**

3.2.1. **Synovite :**

La synovite était détectée en mode B et son activité était étudiée en mode doppler puissance qui est noté de façon qualitative (1+, 2+, 3+).

La synovite se traduit par la présence d’un tissu hypoéchogène (par comparaison à la graisse sous- cutanée) intra-articulaire, faiblement compressif sous la sonde.

En cas de synovite modérée l’angle formé par le cartilage est comblé par un tissu hypo ou anéchogène faisant bomber la capsule (fig. 8). Il en résulte l’apparition d’un triangle hypoéchogène. En cas de synovite importante, la capsule est « décollée » de l’os jusqu’à son insertion osseuse et l’espace rempli par une formation hypoéchogène. Cet aspect est mieux visualisé sur le versant métacarpien de l’articulation (fig. 9).

En mode Doppler, celui-ci peut renfermer un hypersignal couleur si la synovite est active (fig. 10). Il est noté :

- 1+ : vascularisation < 1/3 de la zone d’épaississement synovial
- 2+ : vascularisation < 2/3 de la zone d’épaississement synovial
- 3+ : vascularisation > 2/3 de la zone d’épaississement synovial

Un épanchement articulaire, anéchogène, mobilisable sous la pression de la sonde et non vascularisé en mode Doppler, lui est parfois associé (fig. 11).
Figure 8 : Épaississement synovial ne présentant pas d’activité au doppler. Coupe longitudinale

Figure 9 : Synovite importante interphalangienne proximale du 1er rayon. Coupe longitudinale

Figure 10 : Synovite active (1+) de la 2ème articulation métacarpophalangienne. Coupe longitudinale
Figure 11 : Epanchement intra-articulaire talocrural. Coupe longitudinale
3.2.2. Ténosynovite :

La ténosynovite est définie par la présence d’un tendon épaissi, hypoéchogène ou anéchogène, accompagné ou non d’un épanchement à l’intérieur de la gaine tendineuse, vu dans deux plans perpendiculaires et pouvant être le siège d’un signal doppler (fig.12).

3.2.3. Erosion osseuse :

L’érosion est évaluée en mode B (fig. 18). Elle est définie selon les critères échographiques par la présence d’une discontinuité de la surface osseuse intra-articulaire visible sur deux plans perpendiculaires (pouvant présenter un signal au doppler puissance ; on parle alors de « Hot érosion » (fig. 19).
3.2.4. Enthésopathie :

La sémiologie échographique de l’enthésite associe (à des degrés divers) un aspect hypoéchogène ou hétérogène de l’enthèse avec disparition de l’échostructure normale, fibrillaire hyperéchogène ; un épaississement éventuel de l’enthèse ; des érosions corticales ; des enthésophytes et plus tardivement, des ossifications cicatricielles. Une bursite peut être associée en cas d’enthésite active [28] (fig. 14).

L’enthèse est définie comme une zone d’insertion tendineuse ou ligamentaire, elle est formée par des travées osseuses parallèles aux fibres de collagène du tendon qui s’ancrent dans l’os. Il existe entre l’os et le tendon une zone cartilagineuse qui a la fonction d’amortir les contraintes en traction.

L’enthésopathie est une atteinte inflammatoire des enthèses. Après une phase initiale inflammatoire (ostéite) qui se traduit par des érosions osseuses limitées apparaît un processus cicatriciel fait de prolifération osseuse et d’appositions périostées formant des enthésophytes. Dans les formes évoluées, cette prolifération osseuse va entraîner une véritable fusion osseuse responsable de l’évolution ankylosante des SP. Cette évolution explique bien la chronologie des lésions de la triade ostéite-périostose-hyperostose caractéristique des enthésopathies des SP.

Figure 14 : Enthèse normale représentée par un tendon d’achille d’épaisseur et d’aspect normal. Coupe longitudinale (A) et axiale (B).
3.2.5. Bursite

Elle apparaît sous la forme d’une collection plus ou moins bien limitée, plus ou moins compressible, au contenu souvent hétérogène. Ses parois sont généralement très vascularisées en mode Doppler.

La mise en évidence d’un épanchement à la face dorsale du doigt est sensibilisée par l’hyperextension de ce dernier.

Figure 15 : Aponévrose plantaire hypoéchogène d’épaisseur normale (A). Aspect épaissi de l’aponévrose plantaire correspondant à une aponévropathie plantaire (B). Coupe longitudinale.
VII. RESULTATS :

Nous allons d’abord exposer les caractéristiques de notre population puis nous décrivons les résultats obtenus par l’échographie ostéo-articulaire.

1. Caractéristiques des patients :

26 patients ont été inclus entre Mai 2010 et Février 2011. Parmi eux, 21 femmes et 5 hommes (sexe ratio hommes/femmes= 0.2) (fig. 16). La durée moyenne d’évolution des symptômes était de 6 ans.

Dix-sept patients avaient une PR, deux patients avaient une SpA (1spondylarthrite ankylosante et 1 rhumatisme psoriasique), trois patients avaient un syndrome de Goujerot-sjogren, une patiente avait une vascularite, un patient avait une arthopathie goutteuse, un avait une hémochromatose, et un autre avait une fibromyalgie (fig. 17).
<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>NB Patients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>17</td>
<td>65%</td>
</tr>
<tr>
<td>SpA spondylarthrite ankylosante</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>SpA rhumatisme psoriasique</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>syndrome de Goujerot-sjogren</td>
<td>3</td>
<td>12%</td>
</tr>
<tr>
<td>vascularite</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Arthopathie goutteuse</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Hémochromatose</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Fibromyalgie.</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>total</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

2. **Analyse descriptive :**

2.1. **Clinique :**

Il y avait en moyenne 1.5 articulations gonflées par patient (extrêmes 0-6) et 3 articulations douloureuses (extrêmes 0-8).

![Figure 17](image_url)
2.2. **Echographie** :

L’échographie a ainsi pu mettre en évidence 68 synovites, 20 ténosynovites, 3 érosions osseuses et 27 signaux doppler positifs.

2.2.1. **Synovite** :

La répartition des anomalies échographiques est assez homogène pour les synovites avec une atteinte prépondérante de l’articulation radio-carpienne et de la 2ème MCP. Nous avons comparé le nombre de synovite mise en évidence par l’examen clinique et l’échographie. L’échographie met en évidence un nombre plus important de synovites que l’examen clinique chez 22 patients versus 16 (fig.18- 19- 20- 21- 22- 23).

![Figure 18](image-url)
Figure 19: Synovite non active de la 1ère articulation métacarpophalangienne. coupe longitudinale

Figure 20: Synovite active (1+) de la 2ème articulation métacarpophalangienne. coupe longitudinale

Figure 21: Synovite active (2+) de l’articulation radiocarpienne. Coupe longitudinale en mode B (A) et doppler (B)

Figure 22: Synovite non active de l’interphalangienne proximale. Coupe longitudinale.
2.2.2. Ténosynovite :

L’échographie a mis en évidence au moins une ténosynovite chez 9 patients avec un signal au doppler chez 7 patients. Les tendons les plus touchés sont les tendons extenseurs et le tendon extenseur ulnaire du carpe (fig.24-25).

Figure 23 : kyste synovial de face antérieure du poignet (A) dont les cloisons sont également hypervasculaire au doppler (B).

Figure 24 : Ténosynovite non hypervasculaire au doppler du tendon extenseur ulnaire du carpe. Coupe longitudinale.
2.2.3. Erosions osseuses :

Le nombre d’érosions détectées en échographie était de 3, intéressant la 2ème, 5ème MCP et l’extrémité ulnaire inférieure et dont 2 sont infra-radiologiques (fig.26-27-28).

Figure 25 : Ténosynovite hyper-vasculaire des tendons fléchisseurs des doigts. Coupe axiale en mode B (a) et doppler énergie (b).

Figure 26: érosion et synovite ulnaire inférieure. Coupe longitudinale.
Figure 27 : importante érosion radiale (a) avec synovite hypervasculaire radio carpienne (b). Coupe longitudinale.

Figure 28 : érosion ulnaire inférieure avec synovite radio carpienne. Coupe longitudinale.
2.2.4. *Enthésophytes* :

Une enthésopathie achillienne était présente chez 2 patients (fig.29-30).

Figure 29 : L’exploration des 2 tendons d’achille montre une ossification de l’insertion calcanéenne des 2 tendons en faveur d’une enthésopathie achillienne.

Figure 30 : une enthésopathie achillienne avec signal doppler positif. Coupe longitudinale.
2.2.5. Complications :

Des fissures et pré-ruptures tendineuses constatées échographiquement chez 4 patients (fig.31-32-33).

Figure 31: Importante ténosynovite des tendons long et court extenseur radial du carpe, hypervasculaire au doppler couleur avec de multiples fissures profondes du tendon long extenseur, en pré-rupture.

Figure 32: Ténosynovite de la gaine du tendon long abducteur du pouce avec tuméfaction et multiples fissures du tendon long abducteur du pouce. Coupe axiale.
Figure 33: Fissure de la face profonde du corps du tendon achilien droit communiquant avec une collection liquidienne en regard (a). Bursite pré achilienne gauche (b).
<table>
<thead>
<tr>
<th>Identité</th>
<th>Clinique</th>
<th>Echographie</th>
<th>Palpation</th>
<th>Résumé des observations</th>
<th>Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 ans, féminin</td>
<td>Polyarthrite chronique</td>
<td>Hypertrophie de la synoviale des deux articulations</td>
<td>Palpation de l'ischiofémorale gauche</td>
<td>Obs. n°11</td>
<td>Polyarthrite chronique des grosses et petites articulations n'épargnant pas l'enceinte</td>
</tr>
<tr>
<td>45 ans, féminin</td>
<td>Polyarthrite chronique</td>
<td>Polyarthrite des grosses et petites articulations + anémie macrocytaire</td>
<td>Ténosynovite de l'extenseur radiaire du carpe G</td>
<td>Obs. n°5</td>
<td>Polyarthrite + talalgies</td>
</tr>
<tr>
<td>52 ans, féminin</td>
<td>Polyarthrite chronique</td>
<td>Polyarthrites des grosses et petites articulations</td>
<td>Palpation de l'ischiofémorale gauche</td>
<td>Obs. n°7</td>
<td>Polyarthrite chronique des grosses et petites articulations</td>
</tr>
<tr>
<td>15 ans, Masculin</td>
<td>Polyarthrite</td>
<td>Polyarthrite + goutte</td>
<td>Palpation de l'ischiofémorale gauche</td>
<td>Obs. n°6</td>
<td>Polyarthrite + goutte</td>
</tr>
<tr>
<td>60 ans, Féminin</td>
<td>Polyarthrite chronique</td>
<td>Gonalgies + polyarthrite distale</td>
<td>Palpation de l'ischiofémorale gauche</td>
<td>Obs. n°4</td>
<td>polyarthrite des mains et pieds</td>
</tr>
<tr>
<td>22 ans, Féminin</td>
<td>Polyarthrite chronique</td>
<td>Polyarthrite + talalgies</td>
<td>Palpation de l'ischiofémorale gauche</td>
<td>Obs. n°3</td>
<td>Polyarthrite mains et pieds</td>
</tr>
<tr>
<td>33 ans, Féminin</td>
<td>Polyarthrite chronique</td>
<td>Polyarthrite mains et pieds</td>
<td>Palpation de l'ischiofémorale gauche</td>
<td>Obs. n°2</td>
<td>Polyarthrite mains et pieds</td>
</tr>
<tr>
<td>61 ans, féminin</td>
<td>Polyarthrite chronique</td>
<td>Polyarthrite mains et pieds</td>
<td>Palpation de l'ischiofémorale gauche</td>
<td>Obs. n°1</td>
<td>Polyarthrite mains et pieds</td>
</tr>
</tbody>
</table>

Syndrome de Gougerot-Sjogren

PR

Fibromyalgie

Suspicion de vascularite

Hémochromatose

Arthropathie goutteuse

Rhumatisme psoriasique

Résultats
<table>
<thead>
<tr>
<th>N°</th>
<th>Obs.</th>
<th>Âge</th>
<th>Sexe</th>
<th>Polyarthrite chronique</th>
<th>Polyarthralgies des mains et des doigts</th>
<th>Échographie de la main gauche et du poignet</th>
<th>Diagnostic retenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>63 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Hypertrophie de la synoviale de l'articulation radiocarpienne gauche peu vascularisée au doppler énergie (1+)</td>
<td>Hypertrophie de la synoviale des deux articulations radio-carpiennes, avasculaires au doppler couleur.</td>
<td>Tendinopathie Achilienne droite distale active (néo-vascularisation) avec péri-tendinopathie active.</td>
<td>Polyarthrite chronique avec cervicalgies inflammatoires (PR sous MTX)</td>
</tr>
<tr>
<td>13</td>
<td>70 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale.</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>12</td>
<td>55 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>10</td>
<td>52 ans masculin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>9</td>
<td>49 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>8</td>
<td>45 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>7</td>
<td>42 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>6</td>
<td>40 ans masculin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>5</td>
<td>35 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>4</td>
<td>30 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>3</td>
<td>25 ans masculin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>2</td>
<td>20 ans féminin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
<tr>
<td>1</td>
<td>15 ans masculin</td>
<td>Normal</td>
<td>mains</td>
<td>Synovite médiocarpienne et médocarpienne bilatérale</td>
<td>Synovite radio-carpienne et ulnocarpienne bilatérale de carpe.</td>
<td>Synovite médiocarpienne et médocarpienne de carpe.</td>
<td>Polyarthrite chronique bilatérale</td>
</tr>
</tbody>
</table>
VIII. DISCUSSION

Notre étude a porté sur un grand nombre d’articulations et de tendons avec une analyse doppler systématiquement réalisée en cas de synovite ou ténosynovite.

L’échographie est plus performante que l’examen clinique pour le diagnostic des synovites.

L’échographie est moins performante que la radiographie standard pour le diagnostic des érosions de l’ensemble des articulations des poignets et des mains mais reste plus sensible au niveau des MCP 1, 2, 5 et des IPP.

Enfin, la reproductibilité interobservateur pour le diagnostic des synovites, ténosynovites et érosions osseuses n’a pas été faite.

Cependant, notre étude comporte des limites :

- Le faible nombre de patients. La difficulté de recrutement est liée à une contrainte de temps, l’échographie ostéo-articulaire n’est faite qu’une fois par semaine par un seul médecin.

- Les renseignements cliniques détaillés et paracliniques n’ont pas été fournis chez la plupart des malades suivis en consultation de rhumatologie (peu de renseignement sur les bons de demande d’échographie). Seuls chez les malades hospitalisés qu’on a pu recueillir tous les renseignements.

- Enfin, nous n’avons pas inclus des sujets témoins. Ceci aurait pu être intéressant dans la mesure où plusieurs études ont montré la présence d’érosions et de synovites en échographie chez les sujets sains. Il serait donc intéressant de réaliser une étude cas témoin afin de pouvoir déterminer la sensibilité et la spécificité de l’échographie.
1. **Synovites et ténosynovites**

Dans notre étude les échographies comprenaient systématiquement une étude du signal doppler en cas de synovite ou ténosynovite afin de différencier les formes actives des formes inactives. On a objectivé la supériorité de l’échographie par rapport à l’examen clinique en ce qui concerne le diagnostic de synovites.

Plusieurs études ont montré la supériorité de l’échographie sur l’examen clinique dans la détection de synovites. De plus la bonne spécificité des lésions échographiques observées a été mise en évidence par les groupes contrôles qui ne présentent pas d’anomalie.

En effet l’équipe de Wakefield et al. et d’auteurs ont montré que l’échographie est plus sensible que l’examen clinique pour le diagnostic des synovites et ténosynovites et qu’on pouvait les distinguer l’une de l’autre [38 ; 39].

L’étude d’Olivieri et al. [40] a montré une sensibilité et spécificité de l’échographie de 100% par rapport à l’IRM dans la détection de ténosynovites des fléchisseurs des doigts chez des patients présentant des doigts en saucisse.

M.A. D’Agostino et al. affirment que dans la majorité des cas, la sensibilité et la spécificité de l’échographie, se sont révélées comparables à celles de l’IRM, à savoir respectivement, de 97 et 89 % pour la détection de synovites des petites articulations des mains et des pieds, de 92 et 70 % pour les synovites des grosses articulations comme la hanche et l’épaule [41].

Cependant, tout comme les érosions osseuses, il a été décrit en échographie des synovites des MCP et MTP chez les sujets sains, en proportion variable (de 3 à 50%) [42]. Les chiffres les plus importants étaient rapportés pour les articulations MTP. Il s’agissait toujours de synovites de bas grade, pour lesquelles il n’y avait pas d’étude doppler. Cependant d’autres études avec échographie doppler n’ont pas retrouvé de synovite chez les sujets sains [43]. Ceci n’a pas pu être confirmé dans notre étude car on n’a pas inclus un groupe témoin.
2. **Erosions osseuses**

Nous avons montré que l’échographie détectait plus d’érosions osseuses chez deux patients au niveau des 2 et 5 MCP. Dans la littérature, ces 2 articulations ainsi que la 1 MCP et IPP, la radiographie standard est moins sensible que l’échographie ; ceci est probablement dû au fait que les érosions sont détectables seulement si elles sont tangentielles au faisceau de rayons X et que la résolution en contraste, est faible pour de petites érosions. Selon Boutry et al. l’échographie est également supérieure aux radiographies dans la détection des érosions osseuses, du moins aux doigts et aux avant-pieds [44], mais moins performante que l’IRM. Le recours systématique à l’IRM devant toute suspicion clinique de PR débutante n’apparaît guère envisageable et l’échographie pourrait permettre de mieux sélectionner les patients nécessitant cette IRM complémentaire.

Pour Backhaus et al. [45] il y avait également une bonne sensibilité de l’échographie pour la détection de lésions osseuses, notamment dans le cas où les radiographies étaient normales. Chez 60 patients porteurs d’un rhumatisme inflammatoire chronique, 47% des patients sans lésion radiographique mais avec une atteinte clinique présentaient des irrégularités osseuse à l’échographie.

Wakefield et al. [38], en étudiant les métacarpo-phalangiennes de PR, a montré que l’échographie mettait en évidence 6.5 fois plus d’érosions que la radiographie dans la PR de moins d’un an et 3.5 fois plus que les PR plus anciennes. Par ailleurs, 81% des érosions radiologiques étaient également vues en échographies ; celles qui n’étaient pas détectées par l’échographie siégeaient le plus souvent à la 4ème MCP.

3. **Enthésopathie**

Dans notre série, chez les patients porteurs de spondylarthropathies on a objectivé échographiquement au moins une enthésopathie concordant aux données de la littérature.

Dans l'étude récente de D'agostino et col. [32] réalisée chez 164 spondylarthropathies et 64 sujets contrôle (PR et lombalgiques). 161 patients avaient une anomalie d’au moins une enthèse (98%) versus 11% des contrôles.

4. **Doppler énergie**

On a noté une corrélation doppler-activité de la maladie, concordant aux données de la littérature.

Steuer et al. [31], en étudiant les MCP chez des PR récentes ont trouvé que la sensibilité du doppler était aussi bonne que celle de l'IRM avec injection de gadolinium pour détecter une activité inflammatoire.

La même équipe a également observé une corrélation entre l’importance du signal doppler et l’existence d’érosions radiographiques.

Dans un groupe de 164 spondylarthropathies, D’agostino et col. Ont constaté que 81% des enthèses pathologiques en échographie avaient un signal doppler positif alors qu’il n’y en avait aucun chez les témoins [32].

L'utilisation du doppler dans le suivi de l'efficacité d'un traitement a également été suggérée. Newman et al. [33] ont constaté une diminution du signal doppler après infiltration intra-articulaire de genoux dans différentes pathologies inflammatoires (PR, rhumatisme psoriasique, chondrocalcinose). Teh et al [34] ont également montré une diminution du signal doppler après corticothérapie par voie générale.

Dans l’étude plus récente de Terslev et al. le doppler a été utilisé pour le suivi d’un traitement par etanercept ; l’activité doppler diminuait à 2 semaines de traitement mais il n’y avait plus de différence significative à un an [35].
Certains auteurs soulignent l’existence de nombreux artéfacts, notamment de mouvement, qui gênent l’interprétation du doppler.
IX. CONCLUSION

Nous avons montré les différents aspects séméiologiques obtenus par l’échographie dans le domaine des rhumatismes inflammatoires chroniques.

Cet examen s’inscrit dans le prolongement de l’examen clinique.

En effet, il permet d’objectiver des signes d’inflammation synoviale suspectés à l’interrogatoire mais parfois difficile à affirmer par l’examen clinique.

L’échographie complète la radiographie standard en montrant des lésions plus nombreuses et probablement plus précoce, ce qui est particulièrement utile dans le diagnostic des rhumatismes inflammatoires destructeurs comme la polyarthrite rhumatoïde.

Seul le suivi longitudinal des patients et la confrontation aux données IRM nous permettront d’affirmer la spécificité de ces anomalies.

Enfin, nous proposons un compte rendu type d’échographie du poignet et de la main dans le cadre d’un rhumatisme inflammatoire (voir ci-dessous)
BIBLIOGRAPHIE

[22] B. Lecoq a, L. Fournier b, M. Carteni c, F. Morin c, C. Marcelli a,* Échographie en rhumatologie EMC- Rhumatologie Orthopédie 2 (2005) 443-469

[26] H guerini1, xayral 2, jldrapé 1, afeydy1,r campagna1, f thevenin1, d richarme1. Échographie et polyarthrite rhumatoïde : le point de vue du radiologue journées françaises de radiologie 2 0 0 7 FMC N°79

[27] J. Sibilia, T. Pham, C. Sordet, B. Jaulhac, P. ClaudepierreSpondylarthrite ankylosante et autres spondylarthropathiesEMC 7- 0510

[28] C Pradel, A Lesavre Imagerie des spondylarthropathies JFR 2008 FMC N°35

Pour être classé polyarthrite rhumatoïde le rhumatisme doit satisfaire à 4 des 7 items suivants :

1. Raideur matinale (articulaire ou péri-articulaire) d’au moins une heure

2. Arthrite d’au moins 3 articulations (atteinte simultanée constatée par un médecin et due à une tuméfaction des tissus mous ou à un épanchement articulaire. Les 14 régions concernées sont les IPP, MCP, poignets, coudes, genoux et chevilles).

3. Arthrite des articulations de la main (au moins une région tuméfiée au niveau des IPP, MCP ou poignets).

5. Nodules rhumatoïdes (nodosités sous cutanées constatées par un médecin sur des crétes osseuses ou des surfaces d’extension ou en situation péri-articulaire).

7. Lésions radiologiques typiques sur les clichés des mains et des poignets (déminéralisation en bande évidente ou érosions osseuses).
Annexe 2 : Critères des spondylarthropathies définis par l’European Spondylarthropathy Study Group (ESSG) [3]

Pour être classés spondylarthropathie, le rhumatisme doit satisfaire un critère majeur et au moins un critère mineur :

- **Critères majeurs** :
 - Rachialgies inflammatoires
 - Synovite asymétrique ou prédominant aux membres inférieurs

- **Critères mineurs** :
 - Histoire familiale de spondylarthropathie ou d’uvéite ou d’entérocolopathie
 - Psoriasis
 - Entérocolopathie inflammatoire
 - Enthésopathie
 - Sacroillïïte radiologique
APPORT DE L’ÉCHOGRAPHIE DANS LES RHUMATISMES INFLAMMATOIRES CHRONIQUES

MEMOIRE PRÉSENTÉ PAR :
Docteur JIHANE BOURASSE
née le 13 Avril 1981 à Fès

POUR L’OBTENTION DU DIPLÔME DE SPÉCIALITÉ EN MEDECINE
OPTION : RADIOLOGIE

Sous la direction de :
Professeur TIZNITI SIHAM

Juin 2011